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Introduction

▶ In this presentation we compare two methods of portfolio
allocation: the classical Markowitz one [2] and the hierarchical
risk parity (HRP) based on a clustered optimization [4]

▶ We drive theoretical values of a noise of the allocation weights
coming from the covariance matrix numerical estimation.

▶ We demonstrate that the HRP is indeed less noisy (and thus
more robust) w.r.t. the classical Markowitz

▶ We confirm the theory using Monte Carlo simulations
▶ We have derived the formulas for the min-variance

optimization, Gaussians assets and low cross-correlations.
However, our results can be generalized for other (analytical)
portfolio optimization utility functions, arbitrary
cross-correlations and potentially non-Gaussian processes.
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Portfolio optimization

▶ Our optimization universe contains different assets with prices
Sa(t) and weights wa(t) where a is assets index

▶ The portfolio return is a weighed sum of the asset returns,
∆Xa = ∆Sa/Sa, i.e. ∑

a
wa(t) ∆Xa(t)

▶ To calculate the weights on the next time period we proceed
with minimizing/maximizing different utility functions of the
distribution parameters of the portfolio increment: the
simplest is the min-var optimization
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Classical Markowitz
The min-var optimization is to find weights w which will minimize
the portfolio variance subjected to one constraint, i.e. in
vector/matrix notations:

minimize σ2(w) = wT V w s.t wT a = 1

The assets covariance matrix V elements are often calculated as

Vab = 1
T

NT∑
n=1

∆Xa(tn) ∆Xb(tn)

where the summation run over (business-daily) tenor {tn}NT
n=1, s.t.

t − T < t1 < · · · < tNT < t.
Using a constrained Lagrangian we obtain the following optimal
weights and the optimal portfolio variance

w∗ = V −1 a
aT V −1 a and σ2(w∗) = 1

aT V −1 a
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Covariance matrix

To simplify the notations we scale the returns

Xa,n = ∆Xa(tn)/
√

∆tn

to obtain

Vab = 1
NT

NT∑
n=1

Xa,n Xb,n

▶ Of course, the covariance matrix is not necessarily positively
defined: either by nature (some assets are linearly dependent)
or by calculation errors (MC estimation noise etc)

▶ However, there are multiple way to regularize it, e.g. using
Pastur-Marchenko technique [1], Ledoit-Wolf [3] approach
and others, see, for example, [5].

▶ The number of time-steps NT and can be rarely above 1000
(4Y), otherwise, the estimated cov matrix will be ”outdated”.
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MC noise for the Markowitz weights.
Let us proceed with our main goal: estimation of the ”MC noise”
coming from the covariance matrix summation

Vab = 1
NT

NT∑
n=1

Xa,n Xb,n

and penetrating into the optimal weights.
Let is decompose the estimated matrix in the exact value (denoted
with ”bar”) and the finite-sample noise

V = V̄ + ∆V

where the noise is Gaussian distribution for large NT

∆Vab = 1
NT

∑
p

(Xa,n Xa,n − E [Xa Xb])

Here Xa is a theoretical return stochastic variable.
A. Antonov, A. Lipton and M. López de Prado Overcoming Markowitz’s instability with the help of the HRP 6/ 25



Matrix expansion

Our first technique is based on the matrix expansion for small ∆V .

Example. Let us apply it to the noise of the inverse of the matrix

∆
(
V −1

)
≡ V −1 − V̄ −1

Then, ignoring the square of ∆V in the following reasoning(
V̄ −1 + ∆

(
V −1

))
(V̄ +∆V ) = 1 ⇒ ∆

(
V −1

)
V̄ +V̄ −1 ∆V = 0

we obtain the noise of the inverse covariance matrix

∆
(
V −1

)
≈ −V̄ −1 ∆V V̄ −1

Comment. As we will see below, the answer for the low number of
time-steps (say, corresponding to 1Y) can be sensitive to the
second order of ∆V .
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Inserting this approximation into the Markowitz formula we obtain1

w ≈ (V̄ −1 + ∆
(
V −1)) a

aT (V̄ −1 + ∆ (V −1)) a

Expanding it
w ≈ w̄ + ∆w

around the exact weights

w̄ = V̄ −1 a
aT V̄ −1 a

we get the noise of the weights

∆w ≈ −(1 − w̄ aT ) V −1 ∆V w̄

1We have removed the star from the weights for brevity.
A. Antonov, A. Lipton and M. López de Prado Overcoming Markowitz’s instability with the help of the HRP 8/ 25



The noise expectation

We will measure the noise as a matrix expectation

E
[
∆w ∆wT

]
with elements E [∆wa ∆wb]. We calculate it as follows:
▶ The expectations depend on quadratic expression of ∆V
▶ It can be reduced to a 4-point expectations of X ’s, i.e.

E [Xn Xm Xi Xj ]
▶ We approximated them supposing that the normalized returns

X are Gaussian.
Finally, we obtain a cute expression for the noise matrix

E
[
∆w ∆wT

]
≈ 1

NT

(
V̄ −1

aT V̄ −1 a
− w̄ w̄T

)
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The trace of the noise matrix E
[
∆w ∆wT

]
can be considered as a

one-number measure of the Markowitz noise

NM ≡ E
[
∆wT ∆w

]
= Tr

(
E
[
∆w ∆wT

])
≈ 1

NT

 Tr V̄ −1

aT V̄ −1 a
− aT V̄ −2 a(

aT V̄ −1 a
)2


Comment. In practice we use use the numerically calculated matrix
V instead of its theoretical value V̄ in the final formula – this
introduces an error of the order O(N−2

T ) which we can ignore.
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Analysis

To qualify the noise, we take an eigenvalues decomposition of the
matrix V̄ (symmetric positive-definite after the regularization)

V̄ = UT ΛU

where UT U = I and diagonal matrix Λ contains non-negative
eigenvalues. We have

Tr V̄ −1 =
∑

q
λ−1

q and aT V̄ −k a =
∑

q
b2

q λ−k
q

where b = U a and we sum over the assets q = 1, · · · , NA.

NM ≈ 1
NT

 ∑
q λ−1

q∑
q b2

q λ−1
q

−
∑

q b2
q λ−2

q(∑
q b2

q λ−1
q
)2
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One can easily prove that

NM ≥ 0

for any b and λ.

We can consider two special cases:
▶ The inequality can become equality if one of eigenvalues λ−1

m
is dominant. In this case the noise is zero.

▶ In the opposite case, when the eigenvalues are all equal to
each other the noise is maximum, i.e.

NM = 1
NT

NA − 1∑
q b2

q

where NA is the number of assets.

If the portfolio is highly clustered one can come with the HRP
optimization [4]. Below we will theoretically prove that it has a
smaller MC noise.
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HRP or clustered optimization

Let us consider our assets (their returns) forming several
quasi-independent, clusters or groups:

X =
{

Y (1), · · · , Y (H)
}

where H is the number of clusters.

Inside each group the correlation is close to one and
intra-correlations are close to zero.
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The HRP procedure I

1. Calculate the Markowitz weights independently for all clusters

w (h) = V (h)−1 a(h)

a(h)T V (h)−1 a(h)

where the cluster covariance matrix

V (h)
ij = 1

NT

∑
n

Y (h)
i ,n Y (h)

j,n and V̄ (h) = E
[
Y (h) Y (h)T

]

and the corresponding vectors a(h) taken from the initial ones
a =

(
a(1), · · · , a(H)

)
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The HRP procedure II

2. Calculate a covariance matrix K (H by H) for clustered
variables

C (h) = w (h)T Y (h) for h = 1, 2

defined as

Khq = 1
NT

∑
n,m,p

w (h)
n Y (h)

n,p Y (q)
m,p w (q)

m

It has simplified diagonal elements

Khh = Ω−1
h

where we have denoted the quadratic form

Ωh = a(h)T V (h)−1 a(h)
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The HRP procedure III
3. Calculate the final portfolio with weights ξh for the cluster

variables
Π = ξ1 C (1) + · · · + ξH C (H)

s.t. its variance

σ2(ξ) = E [Π] = ξT K ξ

is minimized provided that(
ξ1 w (1), · · · , ξH w (H)

)
·
(
a(1), · · · , a(H)

)
= 1

This is simply equivalent to

ξ1 + · · · + ξH = ξ · ι = 1

where ι = (1, · · · , 1) because w (h) · a(h) = 1.
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The HRP procedure IV

The optimal values of the clusters weights are given by the
Markowitz formula

ξ = K−1 ι

ιT K−1 ι

4. The final portfolio weights, u(h) = ξh w (h), will be(
u(1)| · · · |u(H)

)
=
(
ξ1 w (1)

1 · · · ξ1w (1)
N1

| · · · |ξHw (H)
1 , · · · , ξHw (H)

NH

)
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The HRP noise

The total portfolio weights noise comes from:
▶ the cluster weights ξ

▶ the noise inside the clusters w (h)

Summing them up we obtain the final HRP noise

NC = 1
NT

1
Ω
∑

h

a(h)T V (h)−2 a(h)

Ωh

(
1 − 2Ωh

Ω + 2Ωh
Ω
∑

r

Ω2
r

Ω2

)

+ Tr V̄ (h)−1 Ωh
Ω

]
where Ω =

∑
h Ωh.

The HRP noise is less than the pure Markowitz noise: it is
transparent esp. for a large number of clusters when Ωh ≪ Ω.

Below we confirm the theory with numerical experiments.
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Numerical experiments

We set up a clustered correlation matrix with the following clusters
on the block diagonal

cluster 0 1 2 3 4 5 6 7 8 9

sizes 10 17 5 17 7 9 15 9 11 3
corrs 0.9 0.8 0.8 0.9 0.8 0.8 0.7 0.8 0.7 0.7
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Figure: Clustered (block) correlation matrix.
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▶ The number of assets corresponding to the matrix size is
NA = 103

▶ We perturb the initial correlation matrix with off-cluster
values which we vary from 0 (unperturbed) till 0.6

▶ We simulate NA Gaussians with these correlation matrices
over variable number of time-steps NT

▶ We try 250, 500, 750 and 1000 time-steps corresponding
approximately to discretized 1Y, 2Y, 3Y and 4Y

▶ We produce sufficient number of samples for each trajectory –
NA assets over NT time-steps – to ensure the Monte Carlo
convergence

▶ We plot normalize noise
√

NT E∆wT ∆w for the direct
Markowitz and

√
NT E [∆uT ∆u] for the HRP
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Observations

▶ A gap between MC noise calculation and the analytics for the
Markowitz optimization is due to non-liniear effects. Indeed,
in the analytics we have ignored the second order of the
covariance matrix noise. Increasing the number of time-steps
reduces this gap

▶ A gap between the HRP MC noise calculation and the
analytics is due to the non-linearity and the fact that the
analytcs ignores the off-diagonal elements

▶ The impact of the HRP to the noise reduction is significant: 3
times for a pure block structure and 5 for more significant
off-diagonal correlations
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Conclusions

▶ We calculated analytical formulas estimating the noise of
portfolio optimization weights for both direct Markowitz
optimization as well as the HRP one

▶ Their comparison shows that the HRP is less noisy than the
direct Markowitz

▶ We have confirmed the analytical results by numerical
experiments

▶ One can easily generalize the results for more complicated
(but still analytical) portfolio optimizations
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