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Outline 

 

 Introduction: equity option markets and the task at hand. 

 

 American option pricing: PDEs, early exercise boundary, integral 

representation and a few asymptotic results. 

 

 Fix point method for American options. 

 

 Numerical performance and calibration. 

 

 Arbitrage considerations and implementation.  

 

 Conclusion. 
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Intro: Task at Hand 

 

 You can trade approximately 1,000,000 listed options on 1,500 underlying 

stocks on the Saxo Bank trading platform. On average 700 options per 

underlying.  

 

 We wish to construct a risk system where you are able to price and risk [first 

order and scenarios] these options. 

 

 To do so we need to back out the parameters of the option prices [dividends, 

volatilities, etc] from the quoted prices. 

 

 The challenge here is that 90% of the equity options are American style. 

 

 American options require pricing by a numerical method such as finite 

difference or binomial tree. 
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Two Challenges: Computer and Man Power 

 

 The best we can do FD pricing is probably O(1ms) CPU time per pricing.  

 

 Hence, calibration to, say 100 American options, would take O(1s) to do. 

 

 However, I am a little nervous about the stability and robustness of such an 

approach on the industrial scale we’re looking at here. 

 

 Particularly, as we also need to back out dividend information. 

 

 At Danske we maintained approx. 100 volatility surfaces with approx. 10 

FTEs (traders + quants).  

 

 Here we can’t afford any manual hand holding.  
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 So I need some abracadabra here: speed, stability, automation. 
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American Option Pricing 

 

 … is an optimal stopping problem 

 
( )( ) sup [ ( ( ) ) ]r t

tC t E e S K


             (1) 

 

 Under the assumption of one factor Markov diffusion  

 

( )dS r q dt dW
S

               (2) 

 

 … American call options can be priced as the solution to the PDE 

 
2 21( ) , ( )

2t S SS
rC C r q SC S C C S K            (3) 
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 The free boundary condition can also be written as  

 

( , ) max( ( , ) , )
rollback value

C t S C t S S K            (4) 

 

 Technically, this includes models with state dependent (local) interest rates, 

dividend yields and volatility: 

 

( , ) , ( , ) , ( , )r r t S q q t S t S             (5) 

 

 Conventional attack is to use finite difference methods to directly solve (3). 

 

 “Market convention” is to use a binomial tree with constant interest rate, 

dividend and volatility.  
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 … and then use different volatilities for different strikes and different 

dividend yields and interest rates for different expiries. 

 

 Yes, I know, doesn’t win any beauty or consistency awards but we shouldn’t 

neglect the information content in this being considered “enough” for battle. 

 

 Note, I will only be considering calls here as we can use the American 

put/call duality 

 

   ( ) ( ) 1 1( ) sup [ ( ( ) ) ] ( ) sup [ ( ) ]
( )

r t q t
t t

American call in domestic ccy American putin foreign ccy

C t E e S K KS t E e
K S

 

 



         

 

 … to price American puts. 
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Early Exercise Boundary: Some Standard Results 

 

 Let the early exercise boundary be given by 

 
*( ) inf{ : ( , ) }

S
S t S C t S S K             (6) 
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 Smooth pasting:  

 
*

* * *

2 * 2

( )( , ( )) 1 , ( , ( )) 0 , ( , ( ) )
1 ( )
2

tS SS
qS t rKC t S t C t S t C t S t

S t

       (7) 

 

 Discontinuity at expiry:  

 
*lim ( ) max(1, ) , 0

t T

rS t K qq
            (8) 
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 Interesting two boundary case for 0r q  : 

 

 
 

 Square root behavior of the early exercise boundary towards expiry 

 
* 1/2)ln ( ) (1) (( )S t O O T t            (9) 
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 Surprisingly, some asymptotic results can be proven by use of the put call 

parity and geometric arguments.  

 

 For example, for 0r q  : 

 
( ) ( )* * * *

*

( ) ( , ( )) ( , ( )) ( )

lim ( )

q T t r T t

t T

S t K C t S t c t S t S t e Ke

rS t Kq

   



    

 

   (10) 

  



 15 

Integral Representation 

 

 The American call can be written as  

 

*
( )

( ) ( )
( , ( )) ( , ( )) [( ( ) )1 ]

T r u t
t S u S ut

european
early exercise premiumcall

C t S t c t S t e E qS u rK du 


     (11) 

 

 If the early exercise boundary *{ ( )}
t T

S t


 is known and parameters are at 

most time dependent then the integrand in (11) can be written in closed 

form. 

 

 Hence, if *S  is known then we can use numerical integration to price the 

American option. 
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 However, (10) can be solved to identify the boundary *S  and then 

subsequently price the American option. 
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Recursive Integral Equation 

 

 We can discretize (11) on a discrete time grid 
0 1 1

0 nn
t t t t T


       and 

then solve  

 
* * *( ) ( , ( );{ ( )} )

i i i j j i
S t K C t S t S t


           (12) 

 

 … recursively backwards starting at 
1n

t


. Bootstrap type of solution. 

 

 This has been known, though not widely spread, since Kim (1990). 

 

 Personally, I have implemented American option pricing along these lines as 

a student back in the early 90s.  

 

 And later used it for fast pricing of Bermuda swaptions at BofA in 2005-08. 



 18 

 Using this we can price O(10,000) American options per second. 

 

 That’s an order better than finite difference and binomial tree pricing of 

O(1,000) options per second. 

 

 Can we do better? 
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Fix Point Integral Equation 

 

 Equation (12) can also be seen as a curve or vector equation -- in time: 

 
* * * *

0
( ) , { ( )}

t T
S K C S S S t

 
            (13) 

 

 This suggest to use (13) as a fix point generator 

 
( 1) ( )( )n nS K C S               (14) 

 

 Alternatively, we can derive a fix point generator from the smooth pasting 

condition *( ) 1
S

C S  . 
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 Andersen, Lake and Offengenden (2016) combine this idea with careful 

interpolation and numerical integration techniques to achieve a very high 

performance algorithm. 

 

 

110.0000

115.0000

120.0000

125.0000

130.0000

135.0000

0 0.1 0.2 0.3 0.4 0.5 0.6

S*(t)  iterated

m=0 m=1



 21 

Andersen & Co American Option Pricing Algorithm 

 

 … combines a number of tricks: 

 

- Fix point integral equation on 1
S

C   or C S K   iterated m times. 

 

- QD+ approximation (see Li (2009)) as starting point. 

 

- Interpolation of the early exercise boundary using Chebyshev polynomial 

with n  spanning points, respecting known limits.  

 

- Numerical integration with l  quadrature points. Different points are used 

for each integral. 

 

 Normally, 5, 1, 4l m n    gives an accuracy that is better than good enough. 
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 At this resolution you will be able to price O(100,000) American options per 

second. 

 

 Roughly 25-50 Black-Scholes type calls per American option. 

 

 Which is approx. 100 times faster than conventional methods. 

 

 In fact, we can simultaneously calibrate to dividends and implied volatilities 

of approx. 200 American calls and puts in O(0.01s).  
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Why Does it Work so Well? 

  

 If parameters are constant then the American option price is infinitely 

smooth in all dimensions.  

 

 In this case, the higher order methods: Chebyshev interpolation and 

quadrature integration really come to their right. 

 

 At the same time they have been very careful with selecting a fix point 

algorithm that has good stability properties.  

 

 Likewise with the particular choice of interpolation. 
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Remarks 

 

 The method’s accuracy does not deteriorate for strikes far OTM, because the 

iterative bit is done around the early exercise boundary. 

 

 The use of high order methods, somewhat, goes against traditional kwant 

instincts which suggest to be concerned about their lack of robustness. 

 

 For piecewise constant parameters (say), we would need to split the integral 

equation in steps.  

 

 This could potentially reduce performance. 

 

 The algorithm requires a closed-form for the value of the early exercise 

premium.  
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 It is possible that the algorithm could work with local volatility if 

approximations were used. But this is untested. 

 

 The algorithm is not particularly easy to code. 

 

 The two-boundary special case is not completely trivial and does require a 

bit of TLC. 

 

 … and this can’t generally be ignored because interest rates are negative in 

large parts of the world. 

 

 The algorithm actually allows vectorising (AVX/GPU style) and this can be 

used to further speed it. 

 

 My implementation is AD’ed and multi-threaded but I haven’t looked at 

vectorising. 
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Absence of Arbitrage 

 

 In this framework there is an implicit assumption that European options can 

be priced at the same implied volatilities as the American options.  

 

 If this is the case, or assumption, then we want to preclude arbitrage in the 

European option prices.  

 

 I.e. for undiscounted option prices with strike given in forward space 

 
( )( , ) [( ) ] , ( ) [ ( )]
( )

S Tg T X E X F T E S T
F T

          (15) 

 

 … we need two conditions to be satisfied: 

 

- Positive maturity spreads: ( , ) 0
T

g T X   
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- Positive butterfly spreads: ( , ) 0
XX

g T X   

 

 The mother of all arbitrage free option prices is the implicit finite difference 

scheme 

 
2 21[1 ( , ) ] ( ) ( ) , (0) (1 )

2 XX
T T X X g T T g T g X          (16) 

 

 ... as described in Andreasen and Huge (2011). 
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Implementation 

 

 Use Andersen & co (2015) algorithm to jointly estimate the dividend yield 

(and interest rate) for each expiry and implied volatility for each strike from 

American put and call mid prices.  

 

 Weed out strikes with negative butterfly spreads. 

 

 Fit the A&H volatility interpolation (implicit finite difference grid) to 

European option prices on remaining strikes. 
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Example Tesla 1m Smile 
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Example Tesla 6m Smile 
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Example: 3M 1m Smile 
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Example: 3M 6m Smile 
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Practical Experiences  

 

 At the moment the machinery runs live at Saxo on 1,500 underlying stocks 

and a total of 1,000,000 options prices. 

 

 All these option volatility surfaces and dividend curves are updated 

approximately every 5-10 minutes. 

 

 For this we use only one server. 

 

 Very ESG. 

 

 The methodology is robust and we have very few errors.  
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Applications: Risk Modeling 

 

 The arbitrage free volatility surfaces are used for stochastic local volatility 

models. 

 

 For all options where we have positions we solve for these option prices in 

3D ( )t S z   backward finite difference grids.  

 

 The finite difference grids are kept in memory and we can now do über fast 

margin calculations – by simply looking up values in stored matrices of 

prices.  

 

 This applies to all sorts of market and counterparty credit risk calculations. 

 

 Value-at-risk on 10,000 options in 1ms. 
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Other Applications 

 

 Automated option market making. 

 

 Data and risk models for our clients. 
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Conclusion 

 

 This is not the last word on American option pricing. 

 

 There are significant and complicated issues around dividends, local and 

stochastic volatility, that are, somewhat, swept under the carpet here. 

 

 However, under the ruling “market convention” it does allow you to 

calibrate quicker than the others can price.   

 

 It would be interesting to see if there are other problems that we 

should/could revisit with this high order fix point machinery. 

 


