Risk Factor Detection with Methods from Explainable ML

Natalie Packham

joint work with Marie Bernière (Humboldt University)

Quant Insights Conference

22 March 2023

Introduction

Introduction

Classical stress testing

Principal Component Analysis (PCA)

Results Data Loadings Interpretation of PCs How many PCs are relevant? How many assets contribute to a PC? PC interpretation

Introduction

Classical stress testing

Principal Component Analysis (PCA)

Results

Explainable ML

- Machine Learning (ML) techniques are now commonly used in finance applications to process large amounts of data.
- Ongoing challenges are missing transparency and missing interpretability: How do predictions and forecasts relate to the inputs?
- This will become more important with ongoing regulatory changes, e.g. (EC, 2021; EBA, 2021).
- Here: First results from a research project on explainable ML funded by IFAF for the next two years.

Explainable ML

- Application in mind is stress testing.
- Classical setting: Factor model with observable factors (e.g. geographic regions, industries).
- Giving **latent factors** an interpretation extends range of stress scenarios.
- Concrete case: Use Principal Component Analysis (PCA) to determine latent factors from class factors and give them an interpretation.
- Idea goes back to work recent work on stress testing, (Packham and Woebbeking, 2019, 2023).

Introduction

Classical stress testing

Principal Component Analysis (PCA)

Results

Linear factor model

• Linear factor model: Express vector of asset returns (r_1, \ldots, r_p) as

 $r_i = \alpha_i + \beta_{i1}F_1 + \beta_{i2}F_2 + \dots + \beta_{id}F_d + \varepsilon_i, \qquad i = 1, \dots, p,$

where

- F_1, \ldots, F_d : return in common factors,
- $\beta_{i1}, \beta_{i2}, \ldots, \beta_{id}$: factor coefficients or factor weights,¹
- α_i: constant,
- ε_i : residual or idiosyncratic component.
- Common assumption: residuals are uncorrelated.
- Number of factors small compared to number of securities, $d \ll p$.

¹Sometimes called loadings. We will use the term "loadings" in a slightly different context. (C) N. Packham Classical stress testing

Linear factor model

- Factors F₁,...F_d observable, e.g. index returns of geographic regions and industries (MSCI GICS).
- Dependence structure of large portfolios expressed via covariances of common factors.
- Decompose $p \times p$ covariance matrix of returns (r_1, \ldots, r_p) into

$\boldsymbol{\Sigma} \approx \boldsymbol{B} \, \boldsymbol{\Omega} \, \boldsymbol{B}^T,$

where

- $B: p \times d$ matrix of factor coefficients,
- $\Omega: d \times d$ covariance matrix of common factors, and
- we ignore the variances of the residuals.
- Examples of factor models in credit risk management: Moody's KMV, CreditMetrics (by RiskMetrics), see e.g. Bluhm et al. (2003).

© N. Packham

Classical stress testing

Classical stress testing

- For "classical" stress testing method, see e.g. (Kupiec, 1998; Dowd, 2002; Packham and Woebbeking, 2019).
- Separate factors into "core" and "peripheral" factors.
- F_s : j < d core factor returns that are stressed directly.
- Remaining d j peripheral factor returns F_u indirectly affected by stress scenario.
- Under normal distribution assumption, optimal estimator of $F_u | F_s^2$:

 $\mathbb{E}(\boldsymbol{F}_u|\boldsymbol{F}_s) = \Sigma_{us} \Sigma_{ss}^{-1} \boldsymbol{F}_s,$

where Σ_{us} and Σ_{ss} denote covariance and variance matrices of F_u and F_s .

See (Bonti *et al.*, 2006) for more advanced stress testing method.

²For simplicity, we assume the factor returns have expectation zero

Stress testing with latent factors

- Goal here is to expand the universe of risk factors by aggregating existing factors into new factors.
- Examples: Global risk factor, European risk factor, cyclical industries, etc.
- Idea:
 - Use PCA on observable factors to determine aggregated (latent) factors.
 - Give these factors an interpretation.

Introduction

Classical stress testing

Principal Component Analysis (PCA)

Results

- In ℝⁿ, PCA refers to a particular rotation of the axes, driven by random variables or data.
- Key idea is to align random variables / data such that
 - first dimension captures maximal variance,
 - second dimension is orthogonal and captures second-most variance,
 - etc.
- Principal components (PCs) are the eigenvectors of covariance / correlation matrix.
- Eigenvalues express amount of variance captured by each PC.

- See James et al. (2013), Section 10.2, for the following.
- Given $n \times d$ data set **X** that is **standardised**.
- First principal component: find scores

 $z_{i1} = \phi_{11}x_{i1} + \phi_{21}x_{i2} + \dots + \phi_{d1}x_{id}, \quad i = 1, \dots, n,$

that have largest sample variance, subject to constraint $\sum_{i=1}^{p} \phi_{i1}^2 = 1$.

▶ In other words, first PC vector³ solves optimisation problem

$$\max_{\phi_{11},...,\phi_{p1}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^{2}}_{=z_{i1}^{2}} \right\} \text{ subject to } \sum_{j=1}^{p} \phi_{j1}^{2} = 1.$$

 Second (and higher) PCs: linear combination of data uncorrelated with first PC(s) and with largest variance (subject to constraint).

³Called loading vector in (James *et al.*, 2013).

Compact notation (recall that X is standardised):

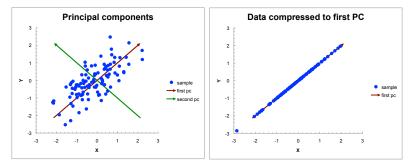
 $\mathbf{Z} = \mathbf{\Phi}^T \, \mathbf{X}$

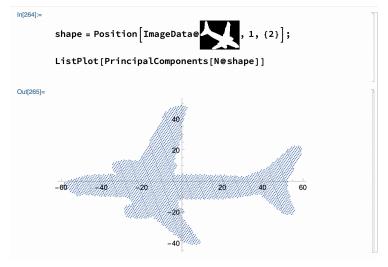
PCs can be viewed as factors, giving factor model

 $\mathbf{X} = \mathbf{\Phi} \, \mathbf{Z}.$

• Φ are the eigenvectors of correlation matrix of X.

Example:





Introduction

Classical stress testing

Principal Component Analysis (PCA)

Results

Data Loadings Interpretation of PCs How many PCs are relevant? How many assets contribute to a PC? PC interpretation

Introduction

Classical stress testing

Principal Component Analysis (PCA)

Results

Data

Loadings Interpretation of PCs How many PCs are relevant? How many assets contribute to a PC? PC interpretation

Data

- Geographical factors: 16 regions and countries represented by MSCI indices
- Industry factors: 11 MSCI Global Industry Classification Standard (GICS) sector indices
- Daily data, split into Jan 1999-Dec 2019 (train) and Jan 2020-Feb 2023 (test)
- Data from Refinitiv Eikon
- Data split into six groups:
 - Europe (developed)
 - Asia-Pacific (developed)
 - N. America
 - Emerging Markets (Europe, M. East, Africa, Asia, Latin Am.)
 - Cyclical industries
 - Defensive industries

Results

Introduction

Classical stress testing

Principal Component Analysis (PCA)

Results

Data

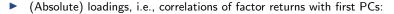
Loadings

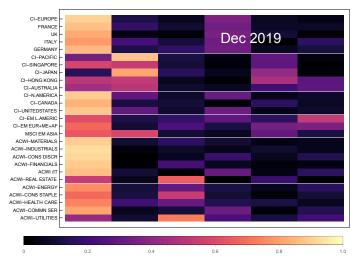
Interpretation of PCs How many PCs are relevant? How many assets contribute to a PC? PC interpretation

- Giving PC's an interpretation: correlation between data and scores (= projection of data to PC).
- Assume that data standardised.
- Using that the PC's are uncorrelated and have variances λ_i , $i = 1, \dots, d$:

$$\mathsf{Corr}(x_{\cdot j}, z_{\cdot i}) = \frac{\mathsf{Cov}(x_{\cdot j}, z_{\cdot i})}{\sqrt{\lambda_i}} = \frac{\mathbb{E}[\phi_{ji} z_{\cdot i} z_{\cdot i}]}{\sqrt{\lambda_i}} = \phi_{ji} \sqrt{\lambda_i}.$$

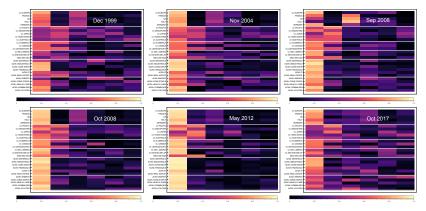
- In words: correlation of data and scores are just PCs scaled with PC standard deviation ("importance" of PC).
- In-line with $\approx 50\%$ of the literature, we shall call these **loadings**.





Results

- PCA at the end of each month on a rolling window of 250 days.
- A few more loadings plots:



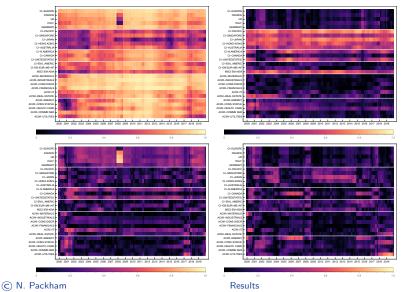
And a movie: Open Movie, Download movie

© N. Packham

Results

Loadings of PCs through time (top: PC1, PC2; bottom: PC3, PC4):

►



Introduction

Classical stress testing

Principal Component Analysis (PCA)

Results

Data

Loadings

Interpretation of PCs

How many PCs are relevant? How many assets contribute to a PC? PC interpretation

Interpretation of PCs

- Two questions:
 - How many PCs are relevant?
 - Which geographic region or industry group does PC explain?
- Literature: (Fenn et al., 2011)

Introduction

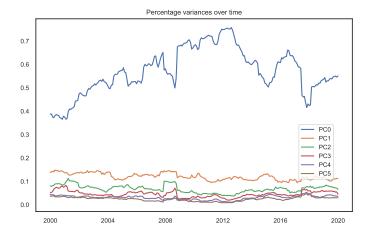
Classical stress testing

Principal Component Analysis (PCA)

Results

Data Loadings Interpretation of PCs How many PCs are relevant? How many assets contribute to a PC PC interpretation

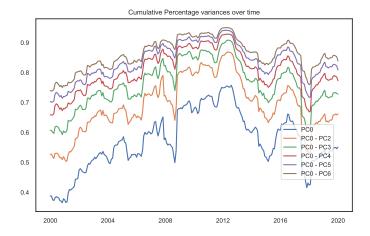
How many PCs are relevant?



© N. Packham

Results

How many PCs are relevant?



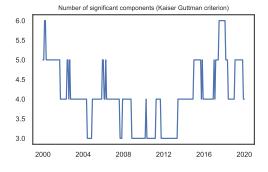
© N. Packham

Results

29

Kaiser-Guttman criterion

- > The Kaiser-Guttman criterion measures the number of significant PCs.
- The *i*-th PC is significant if its (normalised) eigenvalue λ_i is greater than 1/d, where *d* is the number of eigenvalues.
- Idea: A PC that satisfies this criterion accounts for more than a fraction 1/d of the variance.
- See e.g. (Fenn et al., 2011; Guttman, 1954).



Introduction

Classical stress testing

Principal Component Analysis (PCA)

Results

Data Loadings Interpretation of PCs How many PCs are relevant? How many assets contribute to a PC? PC interpretation

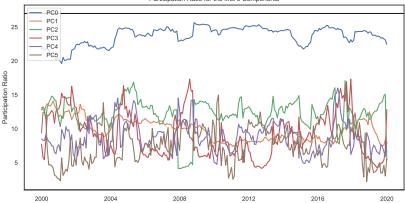
What drives changes in PCs?

Inverse participation ratio (IPR) of *i*-th PC: (Fenn *et al.*, 2011; Guhr *et al.*, 1998):

$$I_k = \sum_{j=1}^d (\phi_{ji})^4.$$

- IPR measures number of assets participating in a PC:
 - eigenvector with equal contributions $\phi_{ji} = 1/\sqrt{d}$ has $I_k = 1/d$;
 - eigenvector with single contribution $\phi_{ji} = 1$ (others zero) has $I_k = 1$.
- Participation ratio (PR): $1/I_k$
- Large PR: Many assets contribute

Participation Ratio



Participation Ratio for the first 6 Components

© N. Packham

Introduction

Classical stress testing

Principal Component Analysis (PCA)

Results

Data Loadings Interpretation of PCs How many PCs are relevant? How many assets contribute to a PC? PC interpretation

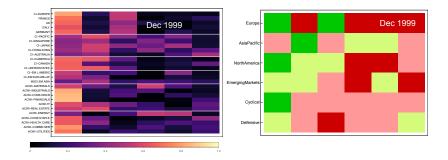
Which geographic region or industry group does PC explain?

- Six groups:
 - Europe (developed)
 Emerging Markets
 - Asia-Pacific (developed) Cyclical industries
 - N. America

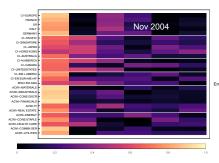
- Defensive industries
- For a given PC and its PR, define the PR group as the group of size PR of indices with highest loadings.
- Group explained / not explained by a particular PC:

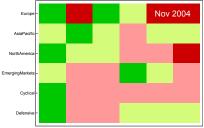
Strong In:	Strong Out:
<i>All</i> indices in a group are in	<i>No</i> indices in a group are in
the PR group.	the PR group.
Weak In:	Weak Out:
<i>More than half</i> of indices in	<i>Half or less</i> of indices in a
a group are in the PR group.	group are in the PR group.

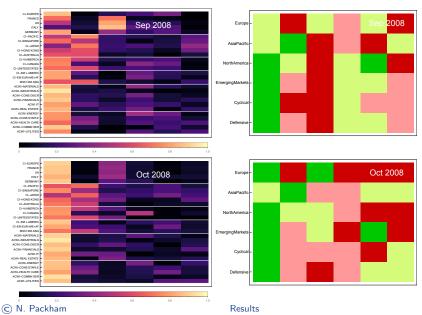
PC interpretation

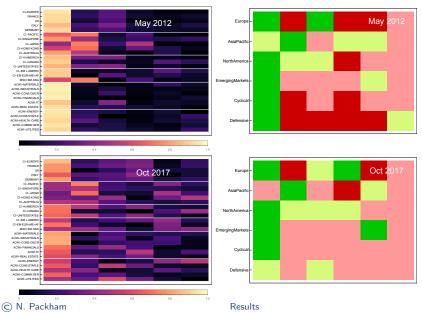


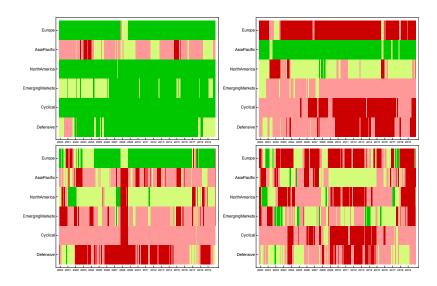
- First PC: global ex-AsiaPacific
- Second PC: AsiaPacific, EM, NA
- ► Third PC: Europe, NA











Results

Some observations

- Procedure selects into appropriate basket, but does not indicate strength of correlation (e.g. May 2012 vs. Oct 2017).
- For strength, consider eigenvalue.
- First PC is always a global risk factor, often ex-Asia-Pacific.
- Cyclical industries are always strong in global factor; defensive industries less strong.
- Second PC is Asia-Pacific factor, mostly with North America.
- Third PC is typically Europe with North America.

Stress testing with aggregated risk factors

- Global stress scenario: adjust first PC or first two PCs, e.g. by choosing an explicit historical scenario or a historical realisation at a specific quantile.
- Asia-Pacific scenario: adjust second PC
- European scenario: adjust first and third PC
- North America scenario: adjust first and second PC
- Scenario "global economy more (less) connected": choose historical scenario where first PC's loadings are high (low)

Overview

Introduction

Classical stress testing

Principal Component Analysis (PCA)

Results

- Factor models are used in various finance applications e.g. to estimate high-dimensional covariance matrices or in stress testing.
- Principal component analysis on a multivariate data set yields a factor model with latent factors.
- This is considered an unsupervised learning method.
- We attempt to give PCs on a data set consisting of risk factors (geographic regions and industries) an interpretation.
- Possible applications:
 - increase range of stress test scenarios
 - further decrease number of factors required for robust covariance matrix estimation

Outlook

- Possibly of interest: Alternative methods find relevant factors across a number of PCs (e.g. (Mao, 2005; Masaeli *et al.*, 2010; Enki *et al.*, 2013; Chang *et al.*, 2016).
- Possibly use Varimax instead of PCA (Kaiser, 1958). Varimax attempts to find axes with few large loadings and many near-zero loadings.
- Non-linear relationships: Kernel-PCA, Autoencoder.

References I

- Bluhm, C., L. Overbeck, and C. Wagner. An Introduction to Credit Risk Modeling. Chapman & Hall/CRC, London, 2003.
- Bonti, G., M. Kalkbrener, C. Lotz, and G. Stahl. Credit risk concentrations under stress. Journal of Credit Risk, 2(3):115–136, 2006.
- Chang, X., F. Nie, Y. Yang, C. Zhang, and H. Huang. Convex sparse pca for unsupervised feature learning. ACM Transactions on Knowledge Discovery from Data (TKDD), 11(1):1–16, 2016.
- Dowd, K. Measuring market risk. Wiley, 2002.
- EBA. EBA discussion paper on Machine Learning for IRB Models. European Banking Authority, EBA / DP / 2021 /04, November 2021.
- EC. Laying down harmonised rules on Artifical lintelligence (Artificial Intelligence Act) and amending certain Union legislative acts. European Commission, April 2021. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206.
- Enki, D. G., N. T. Trendafilov, and I. T. Jolliffe. A clustering approach to interpretable principal components. *Journal of Applied Statistics*, 40(3):583–599, 2013.
- Fenn, D. J., M. A. Porter, S. Williams, M. McDonald, N. F. Johnson, and N. S. Jones. Temporal evolution of financial-market correlations. *Physical review E*, 84(2):026109, 2011.
- Guhr, T., A. Müller-Groeling, and H. A. Weidenmüller. Random-matrix theories in quantum physics: common concepts. *Physics Reports*, 299(4-6):189–425, 1998.

© N. Packham

References II

- Guttman, L. Some necessary conditions for common-factor analysis. *Psychometrika*, 19(2):149–161, 1954.
- James, G., D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical learning, volume 112. Springer, 2013.
- Kaiser, H. F. The varimax criterion for analytic rotation in factor analysis. *Psychometrika*, 23(3):187–200, 1958.
- Kupiec, P. Stress testing in a Value at Risk framework. Journal of Derivatives, 6:7-24, 1998.
- Mao, K. Identifying critical variables of principal components for unsupervised feature selection. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(2):339–344, 2005.
- Masaeli, M., Y. Yan, Y. Cui, G. Fung, and J. G. Dy. Convex principal feature selection. In Proceedings of the 2010 SIAM international conference on data mining, pages 619–628. SIAM, 2010.
- Packham, N. and C. F. Woebbeking. A factor-model approach for correlation scenarios and correlation stress testing. *Journal of Banking & Finance*, 101:92–103, 2019.
- Packham, N. and F. Woebbeking. Correlation scenarios and correlation stress testing. Journal of Economic Behavior & Organization, 205:55–67, 2023.

Thank you!

Prof. Dr. Natalie Packham Professor of Mathematics and Statistics Berlin School of Economics and Law Badensche Str. 52 10825 Berlin natalie.packham@hwr-berlin.de

Hochschule für Wirtschaft und Recht Berlin Berlin School of Economics and Law

