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Explaina-what-again?

• Harry Markowitz's pioneering work on portfolio selection (Markowitz , 
1952) opened the door to the development of an abundance of models. 


• Fund managers now have at their disposal models in all shapes and 
sizes: 


• simple static models such as the mean-variance criterion; 


• supremely flexible stochastic programming models that embrace 
the dynamics of financial markets; and 


• algorithmic models showcasing the latest developments in 
machine learning. 


• The more, the merrier? Right? 


• Well… probably not. 


• The trouble starts when you have to pick a model (or an ensemble 
of models). 


• Which one should you choose? And why? 


• The irritation keeps growing when you are asked to explain why 
your prized black-box model produced a particular asset allocation. 


• Explainability just went missing in action…
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• This short tutorial demonstrates how to bring the explainability of 
dynamic investment models back to life using risk-sensitive 
investment management (RSIM). 


• RSIM applies risk-sensitive control, a branch of stochastic control, to 
solve portfolio selection problems dynamically. 


• It enables investors to optimize their portfolios, modeled as a 
dynamical system, subject to random market noise. 


• The control variable, i.e., the decision variable, for this optimization 
problem is the proportion of wealth the investors allocate to each 
security. 


• The objective function connects the dynamical system and the control 
variable to the investors' broader goals.



Risk-Sensitive Control vs. Standard Stochastic Control



(Standard) Stochastic Control
• In stochastic control, the standard formulation for the objective function is as an expected reward of 

the form , where 


•  denotes the expectation and 


•  is a stochastic reward. 


• However, this formulation does not account for the investors' risk preference. 


• Robert Merton (1969) then defined the reward as the utility  of the investors' wealth , that is, 
. 


• This approach is known as the `Merton model.' 


• The upside is obvious: inserting a utility function in the objective function ensures consistency 
with economic models of risk preferences. 


• The downside is that we now have a nonlinear function between the evolution of our dynamical 
system, the investors' wealth, and the expectation we seek to maximize. 
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Risk-Sensitive Control

• Risk-sensitive control proposes a more efficient formulation for the objective function:





where  parametrizes the investors' aversion toward risk. 


• Thus, no extra utility function is needed. 


• Another important property for finance is that the risk-sensitive criterion naturally 
transposes mean-variance optimisation to a dynamical setting, 


• A simple Taylor expansion around :


J := −
1
θ

ln 𝔼 [e−θr]

θ ∈ (−1,0) ∪ (0,∞)

θ = 0

J ≈ 𝔼 [r] −
θ
2

Var [r] .



Three Use Cases
1. RSIM in the Black-Scholes-Merton World;

2. RSIM with Factors and Benchmark

3. RSIM with Unobservable Factors and Expert 

Opinions
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Case 1: We begin with a simple model set in a Black-Scholes-Merton world

• Consider an investor:


• looking to construct a portfolio to fund 
her retirement in  years. 


• initial wealth $ , and her 


• degree of risk sensitivity is . 


• can invest her wealth in 


• a stock index fund  and 


• a risk-free money market instrument .

T

v

θ > 0

S

B

The Black-Scholes-Merton World 

• Brownian motion ;


• Stock  with price dynamics: 


;


• Risk-free instrument  with price dynamics


.

W(t)

S(t)

dSt

St
= μdt + σdWt, S(0) = s

B(t)

dBt

Bt
= rdt, B(0) = 1



Case 1: RSIM in the Black-Scholes-Merton World

Stock Index fund 
S(t) ∈ ℝ

dS̃t

S̃t
= (μ − r)dt + σdWt, S̃(0) = s

Stochastic  
control  
problem

Optimal investment  
strategy h*(t)

Portfolio process 
V(t) ∈ ℝ

 
dV(t)
V(t)

= h(t)(μ − r)dt + h(t)ΣdW(t)

V(0) = v

Risk-sensitive criterion 

J(t, x, h; θ) := −
1
θ

ln 𝔼 [e−θR(t)]

Value function 
Φ(t)

Mathematically, Discounted asset prices  are 
modelled as geometric Brownian motions

S̃(t) := S(t)/B(t) The wealth process is a 
controlled geometric 

process

 is a -Brownian motion on a filtered complete 

probability space 

Wt ℱt

(Ω, ℱ, (ℱ)T
t=0

, ℙ)



Control Variable
• The control variable  represents the proportion of the investor's total wealth in the stock 

index fund at time . 


• When , the investor is long the stock;


•  is short the stock;


•  implies leverage, funded by shorting the money market instrument. 


• Technically, the control variable  is a -adapted and progressively measurable stochastic 
process. 


• We say that  is admissible, or in class , if it also satisfies the technical condition 




• Main objective of this condition: to prevent unbounded leverage.

h(t)
0 ≤ t ≤ T

h(t) > 0

h(t) < 0

h(t) > 1

h(t) ℱt

h(t) ℋ

P (∫
T

0
|ht|2dt < + ∞) = 1.



Understanding the objective function

• We define the stochastic reward  as the logarithmic excess return  that the 

portfolio earns on top of the risk-free rate over the investment horizon. 


• The risk-sensitive objective function is:





for . 


• The initial wealth $  is simply an additive constant, so it does not affect the control 
problem. 


• For simplicity and without loss of generality, we take . 


• Objective function is intuitive: the investor seeks to maximize the log excess return of their 
portfolio over the risk-free rate consistently with their risk aversion. 

r(T) ln
V(T)

v

J(h) := −
1
θ

ln 𝔼 [e−θ ln V(T)
v ] = ln v −

1
θ

ln 𝔼 [e−θ ln V(T)],

θ ∈ (−1,0) ∪ (0,∞)

v

v = $1



Building Connections

• This objective function connects neatly to utility 
theory. 


• The term  inside the 
expectation acts as a power utility function. 


• The  outside the expectation normalizes the 

criterion to the same unit as the reward. 


• The Taylor expansion 

 is tantamount 

to a `dynamic Markowitz.’


• When we take the limit of the objective function as 
, we recover the logarithmic utility, which also 

corresponds to the Kelly criterion:


e−θ ln V(T) = V−θ(t)

−
1
θ

ln

J(h, t) ≈ 𝔼 [ln V(t)] −
θ
2

Var [ln V(t)],

θ → 0

K(h) := lim
θ→0

J(h) = lim
θ→0

−
1
θ

ln 𝔼 [e−θ ln V(T)] = 𝔼 [ln V(T )] .

Utility theory
(Power utility)

Dynamic 
Markowitz

Kelly
Criterion

Risk-sensitive criterion 

J(h) := −
1
θ

ln 𝔼 [e−θ ln V(T)]



Solving the RSIM problem

• The investor chooses  to maximize the objective function. 


• Define the value function  as 





where  is the class of admissible controls.


• The cleanest and most direct solution is to perform a change of 
probability measure. 

h(t)

Φ(t)

Φ(t) := sup
h∈ℋ

J(h) = sup
h∈ℋ

−
1
θ

ln 𝔼 [e−θ ln V(T)],

ℋ



• Focus on the term  inside the criterion . 


• Apply Itô to get the following dynamics for : 

  


• Thus,





is an exponential process with randomness driven by . 

e−θ ln V(T) J(h)

ln V(t)

d ln V(t) = [(μ − r) h(t) −
1
2

σ2h2(t)] dt + V(t)h(t)σdW(t)

e−θ ln V(T) = exp {−θ∫
T

0 [(μ − r) h(t) −
1
2

σ2h2(t)] dt − θ∫
T

0
h(t)σdW(t)}

exp {−θ∫
T

0
h(t)σdW(t)}



• Before performing a change of measure, we need to `complete the exponential 
martingale.' 


• To do so, multiply and divide  by  to obtain





where


• 


•

e−θ ln V(T) exp {−
1
2

θ2 ∫
T

0
h2(t)σ2dt}

e−θ ln V(T) := exp {θ∫
T

0
g(h(t))dt} χh(T),

g(h) :=
1
2

(θ + 1)σ2h2 − (μ − r) h(t)

χh(t) := exp {−
1
2

θ2 ∫
t

0
h2(s)σ2ds − θ∫

t

0
h(s)σdW(s)} .



• For now, assume that  is such that  is an exponential martingale. 


• Then we can define a new measure  on  via the Radon-Nikodym 
derivative





• Taking the expectation of  and applying the change of measure, we 
obtain 





where  denotes the exponential under the measure . 

h(t) χh(t)

ℙh (Ω, ℱT)

dℙh

dℙ
:= χh

T

e−θ ln V(T)

𝔼 [e−θ ln V(T)] = 𝔼 [exp {−θ∫
T

0
g(h)dt} χh(T)] = 𝔼h [exp {−θ∫

T

0
g(h(t))dt}],

𝔼h [ ⋅ ] ℙh



• Therefore,  








• Finally, it suffices to maximize the function  pointwise to achieve the supremum in this expression. 


• The function  is quadratic in  so it achieves a global maximum 


• at ,


• for . 


• The coefficients  are constant, so the optimal asset allocation  and optimal value  are constant. 


• Thus,  is an exponential martingale for our choice of . 

Jh(h) = −
1
θ

ln 𝔼h [v−θe−θ ln V(T)] = −
1
θ

ln 𝔼h [exp {−θ∫
T

0
g(h(t))dt}]

Φ(t) = sup
h∈ℋ

Jh(h) = sup
h∈ℋ

−
1
θ

ln 𝔼h [exp {−θ∫
T

0
g(h(t))dt}] .

g

g h

g* =
1
2

1
θ + 1 ( μ − r

σ )
2

h* =
1

θ + 1
⋅

μ − r
σ2

r, μ, σ h* g*

χh(T ) h*



Case 2: RSIM with factors and benchmark 
What’s new?

This case improves the Black-Scholes-Merton formulation 3 ways:


1. consider a financial market with  risky securities;


2. generalize the dynamics of the risky assets by introducing a 
factor dependence in their drift. 


• Crucial because the Black-Scholes-Merton setup assumes a 
constant risk premium  while empirical evidence suggests 
that the risk premium is stochastic. 


• Introducing factors is also necessary to capture into our model 
the rapid development of the literature on empirical asset 
pricing and factor investing.    


3. Include an investment benchmark, such as a financial index 
or a bespoke portfolio, to explore active and passive 
management simultaneously. 


• This formulation recognizes that most professional asset 
managers are tasked with replicating or outperforming a 
benchmark. 


• When no benchmark is specified, we retrieve the risk-sensitive 
asset management criterion as a special case.   

m

μ − r

The original surveyor’s bench-mark! 



Benchmark 
L(t) ∈ ℝ

Case 2: RSIM with factors and benchmark

Risk factor  
(state process) 
X(t) ∈ ℝn

Security prices 
S(t) ∈ ℝm

dX(t) = (b + BX(t))dt + ΛdW(t),
X(0) = x0

dSi
t

Si
t

= (a + AX(t))i
dt +

d

∑
j=1

σijdWj
t ,

Si(0) = si, i = 1,…, m,

dLt

Lt
= (c + CX(t)) dt + ΞdWt, L(0) = l

Stochastic  
control  
problem

Optimal investment 
strategy h*(t)

Wealth process 
V(t) ∈ ℝ

Log excess return process . R(t) := ln
V(t)
L(t)

dR(t) = [(−
1
2

h′ (t)Σ′ Σh(t) + h′ (t)a +
1
2

Ξ′ Ξ − c)
+(h′ (t)A − C) X(t)] dt + (h′ (t)Σ − Ξ) dW(t)

R(0) = ln
v
l

.

 
dV(t)
V(t)

= h′ (t)(a + AX(t)) dt + h′ (t)ΣdW(t)

V(0) = v

Risk-sensitive criterion: 

J(t, x, h; θ) := −
1
θ

ln 𝔼 [e−θR(t)]

Value function 
Φ(t)

Mathematically,

Risk factors drive the 
growth of security prices. 

Examples: equity risk premium, 3/5 
factor Fama-French model, 
momentum, liquidity, fundamental 
factors, interest rates, credit, 

GDP…

The securities are the assets traded on 
financial markets: stocks and equity-like securities.

 is a -valued -Brownian motion on a filtered complete probability space 

, with 

Wt ℝd ℱt

(Ω, ℱ, (ℱ)T
t=0

, ℙ) d = n + m + 1

Here  is discounted price of 
asset  

Si(t)
i, i = 1,…, m



Benchmark categorisation (for Case 2 and Case 3) 

The benchmark is a combination of the  securities in the manager’s investment universe.

 

Example: think of S&P500 for a large cap equity manager on the US market. 

m1

The benchmark is a combination of the  securities traded on the financial market, but the 
manager might not be allowed to invest in all of them.


Example: think of Wilshire 5000 for a large cap equity manager.

m1 + m2

The benchmark is observable but its individual constituents might not be observable individually.


Example: real estate property index.

The benchmark is based directly on a factor or a combination of factors, so it cannot be observed 
directly.


Example: the return benchmark of an endowment fund set at the inflation rate plus 400 basis 
points. Because inflation is a partially observable factor, the manager needs to estimate the current 
level of the benchmark dynamically. 

Benchmark

Market-Based

Non  
Market

Replicable

Tradable

Observable

Partially 
Observable

Invested in the

 securities m1 + m2

Not invested in the

 securities m1 + m2



Constructing the benchmark criterion
• The discounted wealth process  is the market value of the self-financing investment portfolio subject to the investment strategy . 

It solves the SDE: 





• The log excess return  tracks the portfolio's performance relative to its benchmark. Its dynamics is:





• Without loss of generality, we index the benchmark's initial level on the investor's starting wealth  by setting .


• The risk-sensitive benchmarked criterion  is 





• The Taylor expansion becomes , which is again a `Dynamic Markowitz' applied to the excess log return 

over the benchmark.

V(t) h(t)

dVt

Vt
=

m

∑
i=1

hi(t)
dSi(t)
Si(t)

= h′ (t)(a(t) + A(t)X(t)) dt + h′ (t)Σ(t)dWt, V0 = v .

Rt := ln
Vt

Lt

dR(t) = [(−
1
2

h′ (t)Σ(t)Σ′ (t)h(t) + h′ (t)a(t) +
1
2

Ξ(t)Ξ′ (t) − c(t)) + (h′ (t)A(t) − C(t)) X(t)] dt + (h′ (t)Σ(t) − Ξ(t)) dW(t), R(0) = ln
v
l

v l := v

J

J(h; θ):= −
1
θ

ln 𝔼 [e−θR(T)]

= −
1
θ

ln 𝔼 [exp {−θ∫
T

0 (−
1
2

h′ (t)Σ(t)Σ′ (t)h(t) + h′ (t)a(t) +
1
2

Ξ(t)Ξ′ (t) − c(t)) + (h′ (t)A(t) − C(t)) X(t)dt − θ∫
T

0
(h′ (t)Σ(t) − Ξ(t)) dW(t)}] .

J(h, t) ≈ 𝔼 [R(t)] −
θ
2

Var [R(t)]



To solve the risk-sensitive benchmarked problem, we proceed with a 
change of measure, as in the previous case. 

• We `complete the exponential martingale' to express the risk-sensitive criterion as





where





and 





• We also assume that the investment strategy  is in class .

J(h; θ) := −
1
θ

ln 𝔼 [exp {θ∫
T

0
g(t, X(t), h(t); θ)dt} χh

T],

g(s, x, h; θ) =
1
2

(θ + 1) h′ Σ(s)Σ′ (s)h − h′ (a(s) + A(s)x) − θh′ Σ(s)Ξ′ (s) + c(s) + C(s)x −
1
2

(θ − 1) Ξ(s)Ξ′ (s),

χh
T:= exp{ − θ∫

T

0
(h(t)′ Σ(t) − Ξ(t)) dW(t) −

1
2

θ2 ∫
T

0
(h′ (t)Σ(t) − Ξ(t)) (Σ′ (t)h(t) − Ξ′ (t)) dt} .

h(t) 𝒜(T)



• Definition 2.5 (Class )


A -valued control process  is in class  if the following 
conditions are satisfied:


(i)  is progressively measurable with respect to 
and is càdlàg;


(ii) ;


(iii) the Doléans exponential  is an exponential martingale, thus 
.

𝒜(T)

ℝm h(t) 𝒜(T)

h(t)
{ℬ([0,t]) ⊗ ℱY

t }t≥0

P (∫
T

0
h(s)

2
ds < + ∞) = 1

χh
T

𝔼 [χh
T] = 1



• Let  be the measure on  defined via the Radon-Nikodym derivative .


• Under the measure , 





is a standard Brownian motion for  and the risk-sensitive control criterion is





where  denotes the expectation taken with respect to the measure . 


• The dynamics of the factors  under the new measure, 





is a controlled diffusion process that depends on the investment strategy . 

ℙh (Ω, ℱT)
dℙh

dℙ
:= χh

T

ℙh

Wh(t) := W(t) + θ∫
t

0
(Σ′ (s)h(s) − Ξ′ (s)) ds

h ∈ 𝒜(T )

Jh(h; θ) = −
1
θ

ln 𝔼h [exp {θ∫
T

0
g(t, X(t), h(t); θ)ds}],

𝔼h [ ⋅ ] ℙh

X(t)

dX(t) = [b(t) + B(t)X(t) − θΛ(t)(Σ′ (t)h(t)−Ξ′ (t))] dt + Λ(t)dWh(t), t ∈ [0,T],

h(t)



• We cannot conclude directly. 


• The function  depends on the stochastic process , so the solution is no 
longer deterministic. 


• However, 


• the change of measure has expressed our risk-sensitive investment problem 
as a standard linear-quadratic-Gaussian risk-sensitive control problem, with 


a controlled state process  that is a linear and Gaussian and 


a reward function  quadratic in its  argument and linear in its  argument.


• This problem is a special case of Jacobson's LEQG problem (Jacobson, 
1973; Bensoussan, 1992), which we can solve efficiently using dynamic 
programming methods. 

g X(t)

X(t)

g h x



The Hamilton-Jacobi-Bellman equation

• Let  be the value function for the control problem, with 

associated Hamilton-Jacobi-Bellman partial differential equation:


   


where , , and





for  and subject to terminal condition .

Φ(t, x) := sup
h∈𝒜(T)

Jh(t, x; h; T, θ)

∂Φ
∂t

(t, x) + sup
h∈ℝm

Lh
t (t, x, DΦ, D2Φ) = 0,

DΦ = ( ∂Φ
∂x1

, …,
∂Φ
∂xi

, …,
∂Φ
∂xn )

′ 

D2Φ = [ ∂2Φ
∂xi∂xj ], i, j = 1,…, n

Lh
t (t, x, p, M) = (b(t) + B(t)x − θΛ(t)Σ′ (t)h)′ p +

1
2

tr (Λ(t)Λ(t)′ M)

−
θ
2

p′ Λ(t)Λ(t)′ p − g(t, x, h; θ),

p ∈ ℝn Φ(T, x) = 0



• The term inside the  is quadratic in . Its unique maximizer 
corresponds to the candidate optimal control





where  stands in for . 

sup h

ĥ(t, x, p) =
1

θ + 1 (Σ(t)Σ′ (t))−1 [a(t) + A(t)x + θΣ(t)(Ξ′ (t) − Λ′ (t)p)],

(t, x, p) (t, X(t), DΦ(t, X(t)))



• Moreover, the value function , where  is the unique symmetric non-negative solution to the matrix 

Riccati equation,  solves a linear ODE, and  is found by integration. Specifically, 


•  solves





where 


and  is the  identity matrix. 


• The vector-valued function solves





• and , where


Φ(t, x) =
1
2

x′ Q(t)x + x′ q(t) + k(t) Q(t)

q(t) k(t)

Q(t)

·Q(t) − Q(t)K0(t)Q(t) + K′ 1(t)Q(t) + Q(t)K1(t) +
1

θ + 1
A′ (t)(Σ(t)Σ′ (t))−1 A(t) = 0,

K0(t) = θ [Λ(t)(I −
θ

θ + 1
Σ′ (t)(Σ(t)Σ′ (t))−1 Σ(t)) Λ′ (t)], K1(t) = B(t) −

θ
θ + 1

Λ(t)Σ′ (t)(Σ(t)Σ′ (t))−1 A(t),

I n × n

q(t)

·q(t) + (K′ 1(t) − Q(t)K0(t)) q(t) + Q(t)(b + θΛ(t)Ξ′ (t)) +
1

θ + 1 (A′ (t) − θQ(t)Λ(t)Σ(t)) (Σ(t)Σ′ (t))−1 (a + θΣ(t)Ξ′ (t)) − C(t) = 0,

k(t) = ∫
T

t
ℓ(t)dt

ℓ(s) =
1
2

tr (Λ(t)Λ′ (t)Q(t)) −
θ
2

q′ (t)Λ(t)Λ′ (t)q(t) + b′ (t)q(t) +
1
2

1
θ + 1

a′ (t)(Σ(t)Σ′ (t))−1 a(t) +
1
2

θ2

θ + 1
q′ (t)Λ(t)Σ′ (t)(Σ(t)Σ′ (t))−1 Σ(t)Λ′ (t)q(t)

−
θ

θ + 1
q′ (t)Λ(t)Σ̂′ (t)(Σ(t)Σ′ (t))−1 a −

θ2

θ + 1
q′ (t)Λ(t)Σ′ (t)(Σ(t)Σ′ (t))−1 Σ(t)Ξ′ (t) + θΞ(t)Λ′ (t)q(t) −

1
2

(θ − 1) Ξ(t)Ξ′ (t) +
θ

θ + 1
a′ (t)(Σ(t)Σ′ (t))−1 Σ(t)Ξ′ (t)

+
1
2

θ2

θ + 1
Ξ(t)Σ′ (t)(Σ(t)Σ′ (t))−1 Σ(t)Ξ′ (t) .



• A standard verification argument completes the resolution of the stochastic 
control problem. The following Theorem summarizes these results.


• Theorem (Risk-Sensitive Benchmarked Asset Management)


(i) The value function  is the unique  solution to associated HJB PDE. 

It has the form .


(ii) There is a unique Borel measurable maximiser  for 
 given by




(iii) The maximizer is optimal, meaning .

Φ C1,2

Φ(t, x) =
1
2

x′ Q(t)x + x′ q(t) + k(t)

ĥ(t, x, p)
(t, x, p) ∈ [0,T] × ℝn × ℝn

ĥ(t, x, p) =
1

θ + 1 (Σ(t)Σ′ (t))−1 [a(t) + A(t)x + θΣ(t)(Ξ′ (t) − Λ′ (t)p)] .

h*(t, X(t)) = ĥ (t, X(t), DΦ(t, X(t)))



Proposition: Fractional Kelly Strategy (FKS)
• The optimal investment strategy  consists of an allocation between three funds: , 

, and .


(i) The fund  is a Kelly portfolio with factor-dependent allocation


   


(ii) The fund  a benchmark-tracking portfolio with deterministic allocation


   


(iii) The fund  is an Intertemporal Hedging Portfolio (IHP) with factor-dependent allocation


   


• The relative allocation of each fund is constant at  for ,  for , and  for 

.

h*(t, X̂(t)) hK

hBench hPIHP

hK

hK(t, X(t)) = (Σ(t)Σ′ (t))−1(a(t) + A(t)X(t)) .

hBench

hBench(t) = (Σ(t)Σ′ (t))−1Σ(t)Ξ′ (t) .

hIHP

hIHP(t, X(t)) = (Σ(t)Σ′ (t))−1Σ(t)Λ(t)′ (q(t) + Q(t)X(t)) .

f :=
1

θ + 1
hK 1 − f hBench f − 1

hIHP



The Active  Passive Continuum Summarized↔

Passive → No active risk

θ → ∞

Index fund

Replicate the benchmark.

Kelly investor

Maximize the growth 

rate of wealth.

Core-Satellite

Mix of benchmark and Kelly portfolio

Active → High active risk

θ → 0

Choice of benchmark is crucial: provides risk 
signature and return.

Benchmark plays no role.

!

Overbetting

θ ∈ (−1,0)

h*(t) =
θ

θ + 1
(ΣΣ′ )−1ΣΞ(t)

Benchmark
tracking portfolio

−
θ

θ + 1
(ΣΣ′ )−1ΣΛ′ (t)DΦ(t, X(t))

Intertemporal hedging
portfolio (IHP)

+
1

θ + 1
(ΣΣ′ )−1(t)(a(t) + A(t)X(t))

Kelly portfolio

.

Intuition: projection / OLS 
regression of the benchmark on the 
securities space. 

Overbetting

“Sell your skill and 

bet on luck.”

 ➜ Kelly portfolio    

              ➜ Security selection   🔎 


       ➜ factor tilting        ⚖

(ΣΣ′ )−1(t)(a(t) + A(t)X(t))
= (ΣΣ′ )−1(t)a(t)
+(Σ1Σ′ 1)−1(t)A(t)X(t)

Short position to hedge the optimal utility against 
changes in factor estimates.

PIHP plays no role.

Objective: hedges future consumption 
against changes in factor levels. 

Degree of active risk

Strategy

Benchmark-tracking 
portfolio

Optimal Asset Allocation

A deeper look

PIHP



Overbetting

“Sell your skill and 

bet on luck.”

The Active  Passive Continuum Summarized↔

Choice of benchmark is crucial: provides risk 
signature and return.

Benchmark plays no role.

h*(t) =
θ

θ + 1
(ΣΣ′ )−1ΣΞ(t)

Benchmark
tracking portfolio

−
θ

θ + 1
(ΣΣ′ )−1ΣΛ′ (t)DΦ(t, X(t))

Intertemporal hedging
portfolio (IHP)

+
1

θ + 1
(ΣΣ′ )−1(t)(a(t) + A(t)X(t))

Kelly portfolio

.

Intuition: projection / OLS 
regression of the benchmark on the 
securities space. 

 ➜ Kelly portfolio    

              ➜ Security selection   🔎 


       ➜ factor tilting        ⚖

(ΣΣ′ )−1(t)(a(t) + A(t)X(t))
= (ΣΣ′ )−1(t)a(t)
+(Σ1Σ′ 1)−1(t)A(t)X(t)

Short position to hedge the optimal utility against 
changes in factor estimates.

PIHP plays no role.

Objective: hedges future consumption 
against changes in factor levels. 

Degree of active risk

Strategy

Benchmark-tracking 
portfolio

Optimal Asset Allocation

A deeper look

PIHP

!

Passive → No active risk

θ → ∞

Active → High active risk

θ → 0

Overbetting

θ ∈ (−1,0)

Kelly investor

Maximize the growth 

rate of wealth.

Index fund

Replicate the benchmark.

Core-Satellite

Mix of benchmark and Kelly portfolio



Case 3: RSIM with unobservable factors and expert opinions

• We remove the assumption that the factors are observable in real-time because 
in reality factors may not be observable. 


• Statistical variables, such as latent variables, are usually unobservable. 


• Macroeconomic variables are typically monthly or quarterly, with a lag and, 
possibly, revisions. 


• Empirical asset pricing factors are often constructed ex-post based on 
portfolio performance. 


• However, removing this assumption raises two fundamental questions. 


• How are we going to estimate the factors? 


• What is the effect of unobservable factors on the stochastic control problem? 



Filter Setup

• In dynamical systems, filtering techniques 
provide a natural way to 


• estimate the current value of a set of 
variables, called the state variables, 


• from another set of related but noisy 
variables, called the observation 
variables. 
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Filtering to Estimate the Factor Process

• In Case 3, the state variables are the factors, and observations can 
come from: 


• Asset prices depend on factor values, so they are relevant to 
estimating . We can observe their prices directly on the financial 
market. While asset prices are a natural start, relying exclusively on 
them has the downside of favoring momentum strategies. 


• Expert forecasts and opinions offer another popular source of 
observations to complement asset prices. Experts include financial 
analysts, economists, policy experts, and nowcasting models. 


• This approach produces a dynamical model in the spirit of Black 
and Litterman (1992). 


• Expert opinions may exhibit behavioral biases. Davis and Lleo 
(2016, 2020) show how to identify and mitigate behavioral biases. 


• Alternative data are time series constructed from structured and 
unstructured data. Some examples include usage trends, product 
review trends, and sentiment indexes. 


• Davis and Lleo (2022) propose a risk-sensitive benchmarked 
model that combines asset prices, expert forecasts, and 
alternative data as observations. 


• Alternative data often feature non-Gaussian noise, so they are 
best modeled using jump-diffusion processes which are outside 
of the scope of this article.  

X
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Effect of unobservability on the stochastic control problem

• The kind of stochastic control problem we need to solve is a partial 
observation problem. 


• Partial observation problems are notoriously difficult to solve because 
they require simultaneously estimating the state and optimizing the 
system. 


• So, can we perform these two tasks separately? 


• Separation is a good idea in practice, but it may produce a suboptimal 
solution. 



• Fortunately, risk-sensitive investment 
problems are separable, so we do not lose 
optimality by estimating first and then 
optimizing (see Lleo and Runggaldier, 2023). 


• This is great news because:


• We can implement the filter directly, as 
discussed above.


• We can reuse the reasoning developed in 
the previous Case to solve the control 
problem.


• We can use filtering to produce portable 
estimates that we can use in other aspects 
of asset management business businesses, 
such as trading and risk management.    
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Benchmark 
L(t) ∈ ℝ

Case 3: RSIM with unobservable factors and expert opinions

Risk factor  
(state process) 
X(t) ∈ ℝn

Security prices 
S(t) ∈ ℝm

dX(t) = (b(t) + B(t)X(t))dt + Λ(t)dW(t),
X(0) ∼ N (μ0, P0)

dSi
t

Si
t

= (a(t) + A(t)X(t))i
dt +

d

∑
j=1

σij (t) dWj
t ,

Si(0) = si, i = 1,…, m,

Estimation via a Kalman filter

Expert forecasts 
ZE(t) ∈ ℝkE

dZt = (aZ(t) + AZ(t)X(t)) dt + ΨZ(t)dWt, Z(0) = z0

dLt

Lt
= (c(t) + C(t)X(t)) dt + Ξ (t) dWt, L(0) = l

Stochastic  
control  
problem

Optimal investment 
strategy h*(t)

Wealth process 
V(t) ∈ ℝ

Log excess return process . R(t) := ln
V(t)
L(t)

dR(t) = [(−
1
2

h′ (t)Σ̂′ 1Σ̂1(t)h(t) + h′ (t)a1(t) +
1
2

Ξ̂′ Ξ̂(t) − c(t))
+(h′ (t)A1(t) − C(t)) X̂(t)] dt

+(h′ (t)Σ̂1(t) − Ξ̂(t)) dU(t) R(0) = ln
v
l

.

 
dV(t)
V(t)

= h′ (t)(a1(t) + A1(t)X̂(t)) dt + h′ (t)Σ̂1(t)dU(t)

V(0) = v

Risk-sensitive criterion: 

J(t, x, h; θ) := −
1
θ

ln 𝔼 [e−θR(t)]

Value function 
Φ(t)

 is a -valued -Brownian motion on a filtered 

complete probability space , with 

Wt ℝd ℱt

(Ω, ℱ, (ℱ)T
t=0

, ℙ)
d = n + m + 1 + k



Tradable and Non-Tradable Assets

• In view of the estimation task, we adopt a broader view of 
the financial market. 


• We include all the securities that can help estimate the 
factors, whether the investor can trade them or not. 


• To distinguish between tradable and non-tradable assets, 
we split the  risky assets into an investment universe of 

 assets that the investor is allowed to trade, 
and the remaining  assets that the 
investor can only observe. 


• Accordingly, we express the securities price vector as 
, where  is the -vector process of 

tradable securities prices and  is the -vector process 
of untradable, but observable, securities prices. 


• We perform a similar decomposition for the vector- and 
matrix-valued functions  and . We denote by 

 and   the subvector and submatrix 
corresponding to the  tradable assets, with an 
analogous definition for  and . 

m
0 < m1 ≤ m

m2 = m − m1 ≥ 0

St := (S(1)′ 

t S(2)′ 

t )′ S(1)
t m1

S(2) m2

a, A Σ
a(1), A(1) Σ(1)

m1
a(2), A(2) Σ(2)

Set of available securities (  assets) m

Investment universe (  assets)m1

Used as observations in 
the estimation process

Traded in the portfolio



Filter Setup

• We gather all these observable processes to construct 
the observation process . 


• Discounted financial securities prices and benchmark 
levels have a geometric dynamics, so they are not 
suitable observations for the (linear) Kalman filter. 


• We replace them with their excess log returns   as 
, with affine-Gaussian 

dynamics 





where 
.


• Similarly, the excess log return vector  
solves the SDE:


Y(t)

𝔰(t)
𝔰i(t) = ln(Si(t)), i = 1,…, m

d𝔰(t) = [(a(t) −
1
2

dΣ(t)) + A(t)X(t)] dt + Σ(t)dW(t), 𝔰(0) = ln(s),

dΣ(t) = ((ΣΣ′ )11(t) (ΣΣ′ )22(t) … (ΣΣ′ )mm(t))′ 

𝔩(t) := ln L(t)

d𝔩(t) = [(c(t) −
1
2

ΞΞ′ (t)) + C(t)X(t)] dt + Ξ(t)dW(t), 𝔩(0) = ln(l) .
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• Accordingly, the observation vector 
 is affine in the state with Gaussian 

noise:


• 


where





• Now, let  be the filtration generated 
by the observation process only. 


• The conditional distribution of the factor process  is normal 
 where 


•  satisfies the Kalman filter equation 
and 


•  is a deterministic matrix-valued function.

Y(t) := (𝔰(t) Z(t) 𝔩(t))′ 

dY(t) = (aY(t) + AY(t)X(t))dt + Γ(t)dW(t), Y(0) = y0,

aY(t) =

a(t) − 1
2 dΣ(t)

aZ(t)

c(t) − 1
2 Ξ′ Ξ(t)

, AY(t) =
A(t)
AZ(t)
C(t)

, Γ(t) =
Σ(t)

ΨZ(t)
Ξ′ (t)

.

ℱY
t = σ{Y(u),0 ≤ u ≤ t}

X(t)
N(X̂(t), P(t))

X̂(t) = 𝔼[X(t) |ℱY
t ]

P(t)

 is the full set of information. 


It includes everything: 

• factors, 

• securities, 

• benchmark, and 

• expert forecasts.

ℱt

 is the subset of information that 
we get from observing  only, that is, the 

• securities, 

• benchmark, and

• expert forecasts.

ℱY
t = σ{Y(u),0 ≤ u ≤ t}

Y(t)



Kalman Filter: 
Filtering equations (Davis 1977, Davis and Lleo 2011, 2020)

• The Kalman estimate  is the unique solution of the SDE:





where .


• The variance  is the unique non-negative definite symmetric solution of the matrix Riccati equation





with .


• The innovation process  defined by





is a -valued -Brownian motion on .

X̂(t)

dX̂(t) = (b(t) + B(t)X̂(t))dt + Λ̂(t)dU(t), X̂(0) = μ0,

Λ̂(t) = (ΛΓ(t)′ + P(t)A′ Y) (Γ(t)Γ(t)′ )−1/2

P(t)

·P(t) = ΛΥ⊥Λ′ − P(t)A′ Y (Γ(t)Γ(t)′ )−1 AYP(t) + (B(t) − ΛΓ(t)′ (Γ(t)Γ(t)′ )−1 AY) P(t)

+P(t)(B(t)′ − A′ Y (Γ(t)Γ(t)′ )−1 Γ(t)Λ′ ), P(0) = P0,

Υ⊥ := I − Γ(t)′ (Γ(t)Γ(t)′ )−1 Γ(t)

U(t)

dU(t) = (Γ(t)Γ(t)′ )−1/2(dY1(t) − AY X̂(t)dt), U(0) = 0

ℝm+K (ℱY
t ) (Ω, ℱ, (ℱt)T

t=0
, ℙ)



• As a final step in the application of the filter, we decompose the 
 matrix  as 

, where 


•  is a  matrix such that  ,


•  is a  matrix such that , and


•  is a -element vector such that 


• and where we are using the notational shortcut  for , 
 for , etc.

(m + k + 1) × (m + k + 1) (Γ(t)Γ′ (t))1/2

(Γ(t)Γ′ (t))1/2 := (Σ̂′ (t) Ψ̂′ Z(t) Ξ̂′ (t))′ 

Σ̂(t) m × (m + k + 1) Σ̂Σ̂′ (t) = ΣΣ′ (t)

Ψ̂Z(t) k × (m + k + 1) Ψ̂ZΨ̂Z(t)′ = ΨZΨZ(t)′ 

Ξ̂(t) (m + k + 1) Ξ̂Ξ̂′ (t) = ΞΞ′ (t)

ΓΓ(t)′ Γ(t)Γ(t)′ 

ΣΣ(t)′ Σ(t)Σ(t)′ 



• Having completed the estimation task, we move to the optimisation. 


• The stochastic control problem is separable, so we simply `substitute' the 
Kalman filter estimate  for the unobservable factor value  in the 
risk-sensitive criterion:





where the dynamics of  is given by the Kalman filter.

X̂(t) X(t)

J(h; θ):= −
1
θ

ln 𝔼 [exp {−θ∫
T

0 (−
1
2

h′ (t)Σ̂1Σ̂′ 1(t)h(t) + h′ (t)a1(t) +
1
2

Ξ̂Ξ̂′ (t) − c(t))
+(h′ (t)A1(t) − C(t)) X̂(t)dt − θ∫

T

0
(h′ (t)Σ̂1(t) − Ξ̂(t)) dU(t)}],

X̂(t)



• A standard verification argument completes the resolution of the stochastic 
control problem. The following Theorem summarizes these results.


• Theorem (Risk-Sensitive Benchmarked Asset Management)


(i) The value function  is the unique  solution to associated HJB PDE. 

It has the form .


(ii) There is a unique Borel measurable maximiser  for 
 given by




(iii) The maximizer is optimal, meaning .

Φ C1,2

Φ(t, ̂x) =
1
2

̂x′ Q(t) ̂x + ̂x′ q(t) + k(t)

ĥ(t, x, p)
(t, x, p) ∈ [0,T] × ℝn × ℝn

ĥ(t, ̂x, p) =
1

θ + 1 (Σ̂1Σ̂′ 1(t))
−1 [a1(t) + A1(t) ̂x + θΣ̂1(t)(Ξ̂′ (t) − Λ̂′ (t)p)] .

h*(t, X̂(t)) = ĥ (t, X̂(t), DΦ(t, X̂(t)))



Proposition: Fractional Kelly Strategy (PFKS)

• The optimal investment strategy  consists of an allocation between three funds: , , 
and .


(i) The fund  is a personal Kelly portfolio with factor-dependent allocation


   


(ii) The fund  a benchmark-tracking portfolio with deterministic allocation


   


(iii) The fund  is an Intertemporal Hedging Portfolio (IHP) with factor-dependent allocation


   


• The relative allocation of each fund is constant at  for ,  for , and  for .

h*(t, X̂(t)) hK hBench

hPIHP

hK

hK(t, X̂(t)) = (Σ̂1Σ̂′ 1(t))−1(a1(t) + A1(t)X̂(t)) .

hBench

hBench(t) = (Σ̂1Σ̂′ 1(t))−1Σ̂1(t)Ξ̂′ .

hIHP

hPIHP(t, X̂(t)) = (Σ̂1Σ̂′ 1(t))−1Σ̂1(t)Λ̂(t)′ (q(t) + Q(t)X̂(t)) .

f :=
1

θ + 1
hK 1 − f hBench f − 1 hIHP



The Active  Passive Continuum Summarized↔

Choice of benchmark is crucial: provides risk 
signature and return.

Benchmark plays no role.

h*(t) =
θ

θ + 1
(Σ̂1Σ̂′ 1)−1Σ̂1Ξ̂(t)

Benchmark
tracking portfolio

−
θ

θ + 1
(Σ̂1Σ̂′ 1)−1Σ̂1Λ̂′ (t)DΦ(t, X̂(t))

Intertemporal hedging
portfolio (IHP)

+
1

θ + 1
(Σ̂1Σ̂′ 1)−1(t)(a1(t) + A1(t)X̂(t))

Kelly portfolio

.

Overbetting

“Sell your skill and 

bet on luck.”

Intuition: projection / OLS 
regression of the benchmark on the 
securities space. 

 ➜ Kelly portfolio    

              ➜ Security selection 🔎 


         ➜ factor tilting     ⚖

(Σ̂1Σ̂′ 1)−1(t)(a1(t) + A1(t)X̂(t))
= (Σ̂1Σ̂′ 1)−1(t)a1(t)
+(Σ̂1Σ̂′ 1)−1(t)A1(t)X̂(t)

⚠  Debiasing is 
essential.

Independent from 
factors and forecast 
➜ motivation for 
investing in index 
funds

Short position to hedge the optimal utility against 
changes in factor estimates.

PIHP plays no role.

Depends on factors 
and forecasts, but 
very small term.

Objective: hedges future consumption 
against changes in factor levels. 

Degree of active risk

Strategy

Benchmark-tracking 
portfolio

Expert forecasts

Optimal Asset Allocation

A deeper look

PIHP

!

Passive → No active risk

θ → ∞

Active → High active risk

θ → 0

Overbetting

θ ∈ (−1,0)

Kelly investor

Maximize the growth 

rate of wealth.

Index fund

Replicate the benchmark.

Core-Satellite

Mix of benchmark and Kelly portfolio

Expert forecasts play a minuscule role via the IHP. 

Expert forecasts are the main driver of the active allocation. 

Expert forecasts
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