

Risk-Sensitive Investment Management: A Guide for Quants Sébastien Lleo, CQF

Explaina-what-again?

- Harry Markowitz's pioneering work on portfolio selection (Markowitz, 1952) opened the door to the development of an abundance of models.
- Fund managers now have at their disposal models in all shapes and sizes:
 - simple static models such as the mean-variance criterion;
 - supremely flexible **stochastic programming models** that embrace the dynamics of financial markets; and
 - algorithmic models showcasing the latest developments in machine learning.
- The more, the merrier? Right?
- Well... probably not.
 - The trouble starts when you have to pick a model (or an ensemble of models).
 - Which one should you choose? And why?
 - The irritation keeps growing when you are asked to explain why your prized black-box model produced a particular asset allocation.
 - Explainability just went missing in action...

- This short tutorial demonstrates how to bring the explainability of dynamic investment models back to life using risk-sensitive investment management (RSIM).
 - RSIM applies **risk-sensitive control**, a branch of stochastic control, to solve portfolio selection problems dynamically.
 - It enables investors to optimize their portfolios, modeled as a dynamical system, subject to random market noise.
 - The control variable, i.e., the decision variable, for this optimization problem is the proportion of wealth the investors allocate to each security.
 - The objective function connects the dynamical system and the control variable to the investors' broader goals.

Risk-Sensitive Control vs, Standard Stochastic Control

(Standard) Stochastic Control

- In stochastic control, the standard formulation for the objective function is as an expected reward of the form $\mathbb{E}[r]$, where
 - $\mathbb{E}\left[\;\cdot\;
 ight]$ denotes the expectation and
 - *r* is a stochastic reward.
- However, this formulation does not account for the investors' risk preference.
- Robert Merton (1969) then defined the reward as the utility U of the investors' wealth w, that is, $\mathbb{E}[U(w)]$.
 - This approach is known as the `Merton model.'
 - The **upside** is obvious: inserting a utility function in the objective function ensures consistency with economic models of risk preferences.
 - The **downside** is that we now have a nonlinear function between the evolution of our dynamical system, the investors' wealth, and the expectation we seek to maximize.

Risk-Sensitive Control

• Risk-sensitive control proposes a more efficient formulation for the objective function:

$$J := -\frac{1}{\theta} \ln \mathbb{E}\left[e^{-\theta r}\right]$$

where $\theta \in (-1,0) \cup (0,\infty)$ parametrizes the investors' aversion toward risk.

- Thus, no extra utility function is needed.
- Another important property for finance is that the risk-sensitive criterion naturally transposes **mean-variance optimisation** to a dynamical setting,
 - A simple **Taylor expansion** around $\theta = 0$:

$$J \approx \mathbb{E}[r] - \frac{\theta}{2} \operatorname{Var}[r].$$

Three Use Cases

- 1. RSIM in the Black-Scholes-Merton World;
- 2. RSIM with Factors and Benchmark
- 3. RSIM with Unobservable Factors and Expert Opinions

Photo courtesy of Pixabay

Case 1: We begin with a simple model set in a Black-Scholes-Merton world

- Consider an investor:
 - looking to construct a portfolio to fund her retirement in *T* years.
 - initial wealth \$*v*, and her
 - degree of risk sensitivity is $\theta > 0$.
 - can invest her wealth in
 - a stock index fund S and
 - a risk-free money market instrument *B*.

The Black-Scholes-Merton World

- Brownian motion W(t);
- Stock S(t) with price dynamics:

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t, \quad S(0) = s;$$

• Risk-free instrument B(t) with price dynamics

$$\frac{dB_t}{B_t} = rdt, \quad B(0) = 1.$$

Case 1: RSIM in the Black-Scholes-Merton World

Mathematically,

Control Variable

- The control variable *h*(*t*) represents the proportion of the investor's total wealth in the stock index fund at time 0 ≤ *t* ≤ *T*.
 - When h(t) > 0, the investor is long the stock;
 - h(t) < 0 is short the stock;
 - h(t) > 1 implies leverage, funded by shorting the money market instrument.
- Technically, the control variable h(t) is a \mathcal{F}_t -adapted and progressively measurable stochastic process.
- We say that h(t) is **admissible**, or in class \mathcal{H} , if it also satisfies the technical condition $P\left(\int_{0}^{T} |h_{t}|^{2} dt < +\infty\right) = 1.$
 - Main objective of this condition: to prevent unbounded leverage.

Understanding the objective function

- We define the stochastic reward r(T) as the logarithmic excess return $\ln \frac{V(T)}{v}$ that the portfolio earns on top of the risk-free rate over the investment horizon.
- The risk-sensitive objective function is:

$$J(h) := -\frac{1}{\theta} \ln \mathbb{E}\left[e^{-\theta \ln \frac{V(T)}{v}}\right] = \ln v - \frac{1}{\theta} \ln \mathbb{E}\left[e^{-\theta \ln V(T)}\right],$$

for $\theta \in (-1,0) \cup (0,\infty)$.

- The initial wealth \$*v* is simply an additive constant, so it does not affect the control problem.
- For simplicity and without loss of generality, we take v = \$1.
- Objective function is intuitive: the investor seeks to maximize the log excess return of their portfolio over the risk-free rate consistently with their risk aversion.

Building Connections

- This objective function connects neatly to **utility theory**.
 - The term $e^{-\theta \ln V(T)} = V^{-\theta}(t)$ inside the expectation acts as a **power utility function**.
 - The $-\frac{1}{\theta}$ In outside the expectation normalizes the criterion to the same unit as the reward.
- The Taylor expansion

 $J(h, t) \approx \mathbb{E}\left[\ln V(t)\right] - \frac{\theta}{2} \text{Var}\left[\ln V(t)\right], \text{ is tantamount}$

to a `dynamic Markowitz.'

• When we take the limit of the objective function as $\theta \rightarrow 0$, we recover the logarithmic utility, which also corresponds to the Kelly criterion:

$$K(h) := \lim_{\theta \to 0} J(h) = \lim_{\theta \to 0} -\frac{1}{\theta} \ln \mathbb{E} \left[e^{-\theta \ln V(T)} \right] = \mathbb{E} \left[\ln V(T) \right].$$

Solving the RSIM problem

- The investor chooses h(t) to maximize the objective function.
- Define the value function $\Phi(t)$ as

$$\Phi(t) := \sup_{h \in \mathcal{H}} J(h) = \sup_{h \in \mathcal{H}} -\frac{1}{\theta} \ln \mathbb{E} \left[e^{-\theta \ln V(T)} \right],$$

where ${\mathscr H}$ is the class of admissible controls.

• The cleanest and most direct solution is to perform a change of probability measure.

- Focus on the term $e^{-\theta \ln V(T)}$ inside the criterion J(h).
- Apply Itô to get the following dynamics for $\ln V(t)$:

$$d\ln V(t) = \left[\left(\mu - r\right) h(t) - \frac{1}{2}\sigma^2 h^2(t) \right] dt + V(t)h(t)\sigma dW(t)$$

• Thus,

$$e^{-\theta \ln V(T)} = \exp\left\{-\theta \int_0^T \left[\left(\mu - r\right)h(t) - \frac{1}{2}\sigma^2 h^2(t)\right]dt - \theta \int_0^T h(t)\sigma dW(t)\right\}$$

is an exponential process with randomness driven by $\exp\left\{-\theta\int_0^T h(t)\sigma dW(t)\right\}$.

Before performing a change of measure, we need to `complete the exponential martingale.'

• To do so, multiply and divide
$$e^{-\theta \ln V(T)}$$
 by $\exp\left\{-\frac{1}{2}\theta^2 \int_0^T h^2(t)\sigma^2 dt\right\}$ to obtain

$$e^{-\theta \ln V(T)} := \exp\left\{\theta \int_0^T g(h(t))dt\right\} \chi^h(T),$$

where

•
$$g(h) := \frac{1}{2}(\theta + 1)\sigma^2 h^2 - (\mu - r)h(t)$$

$$\boldsymbol{\chi}^{h}(t) := \exp\left\{-\frac{1}{2}\theta^{2}\int_{0}^{t}h^{2}(s)\sigma^{2}ds - \theta\int_{0}^{t}h(s)\sigma dW(s)\right\}.$$

- For now, assume that h(t) is such that $\chi^{h}(t)$ is an exponential martingale.
- Then we can define a **new measure** \mathbb{P}_h on (Ω, \mathscr{F}_T) via the **Radon-Nikodym derivative**

$$\frac{d\mathbb{P}_h}{d\mathbb{P}} := \chi_T^h$$

• Taking the expectation of $e^{-\theta \ln V(T)}$ and applying the change of measure, we obtain

$$\mathbb{E}\left[e^{-\theta \ln V(T)}\right] = \mathbb{E}\left[\exp\left\{-\theta \int_0^T g(h)dt\right\} \chi^h(T)\right] = \mathbb{E}^h\left[\exp\left\{-\theta \int_0^T g(h(t))dt\right\}\right],$$

where $\mathbb{E}^{h}[\cdot]$ denotes the exponential under the measure \mathbb{P}_{h} .

• Therefore,

$$J^{h}(h) = -\frac{1}{\theta} \ln \mathbb{E}^{h} \left[v^{-\theta} e^{-\theta \ln V(T)} \right] = -\frac{1}{\theta} \ln \mathbb{E}^{h} \left[\exp \left\{ -\theta \int_{0}^{T} g(h(t)) dt \right\} \right]$$
$$\Phi(t) = \sup_{h \in \mathcal{H}} J^{h}(h) = \sup_{h \in \mathcal{H}} -\frac{1}{\theta} \ln \mathbb{E}^{h} \left[\exp \left\{ -\theta \int_{0}^{T} g(h(t)) dt \right\} \right].$$

- Finally, it suffices to maximize the function g pointwise to achieve the supremum in this expression.
- The function g is quadratic in h so it achieves a global maximum

• at
$$g^* = \frac{1}{2} \frac{1}{\theta + 1} \left(\frac{\mu - r}{\sigma}\right)^2$$
,
• for $h^* = \frac{1}{\theta + 1} \cdot \frac{\mu - r}{\sigma^2}$.

- The coefficients r, μ, σ are constant, so the optimal asset allocation h^* and optimal value g^* are constant.
 - Thus, $\chi^h(T)$ is an exponential martingale for our choice of h^* .

Case 2: RSIM with factors and benchmark What's new?

This case improves the Black-Scholes-Merton formulation 3 ways:

- 1. consider a financial market with *m* risky securities;
- 2. generalize the dynamics of the risky assets by introducing a **factor dependence in their drift**.
- Crucial because the Black-Scholes-Merton setup assumes a constant risk premium μr while empirical evidence suggests that the risk premium is stochastic.
- Introducing factors is also necessary to capture into our model the rapid development of the literature on empirical asset pricing and factor investing.
- 3. Include an **investment benchmark**, such as a financial index or a bespoke portfolio, to explore active and passive management simultaneously.
- This formulation recognizes that most professional asset managers are tasked with replicating or outperforming a benchmark.
- When no benchmark is specified, we retrieve the risk-sensitive asset management criterion as a special case.

The original surveyor's bench-mark!

Benchmark categorisation (for Case 2 and Case 3)

The benchmark is a combination of the m_1 securities in the manager's investment universe.

Example: think of S&P500 for a large cap equity manager on the US market.

The benchmark is a combination of the $m_1 + m_2$ securities traded on the financial market, but the manager might not be allowed to invest in all of them.

Example: think of Wilshire 5000 for a large cap equity manager.

The benchmark is observable but its individual constituents might not be observable individually.

The benchmark is based directly on a factor or a combination of factors, so it cannot be observed

Example: the return benchmark of an endowment fund set at the inflation rate plus 400 basis points. Because inflation is a partially observable factor, the manager needs to estimate the current level of the benchmark dynamically.

Constructing the benchmark criterion

• The discounted wealth process V(t) is the market value of the self-financing investment portfolio subject to the investment strategy h(t). It solves the SDE:

$$\frac{dV_t}{V_t} = \sum_{i=1}^m h_i(t) \frac{dS_i(t)}{S_i(t)} = h'(t) \left(a(t) + A(t)X(t) \right) dt + h'(t)\Sigma(t)dW_t, \qquad V_0 = v \,.$$

• The log excess return $R_t := \ln \frac{V_t}{L_t}$ tracks the portfolio's performance relative to its benchmark. Its dynamics is:

$$dR(t) = \left[\left(-\frac{1}{2} h'(t) \Sigma(t) \Sigma'(t) h(t) + h'(t) a(t) + \frac{1}{2} \Xi(t) \Xi'(t) - c(t) \right) + \left(h'(t) A(t) - C(t) \right) X(t) \right] dt + \left(h'(t) \Sigma(t) - \Xi(t) \right) dW(t), \quad R(0) = \ln \frac{v}{t}$$

- Without loss of generality, we index the benchmark's initial level on the investor's starting wealth v by setting l := v.
- The risk-sensitive benchmarked criterion J is

$$\begin{split} J(h;\theta) &:= -\frac{1}{\theta} \ln \mathbb{E}\left[e^{-\theta R(T)}\right] \\ &= -\frac{1}{\theta} \ln \mathbb{E}\left[\exp\left\{-\theta \int_0^T \left(-\frac{1}{2}h'(t)\Sigma(t)\Sigma'(t)h(t) + h'(t)a(t) + \frac{1}{2}\Xi(t)\Xi'(t) - c(t)\right) + \left(h'(t)A(t) - C(t)\right)X(t)dt - \theta \int_0^T \left(h'(t)\Sigma(t) - \Xi(t)\right)dW(t)\right\}\right]. \end{split}$$

• The Taylor expansion becomes $J(h, t) \approx \mathbb{E} [R(t)] - \frac{\theta}{2} \text{Var} [R(t)]$, which is again a **`Dynamic Markowitz**' applied to the excess log return over the benchmark.

To solve the risk-sensitive benchmarked problem, we proceed with a change of measure, as in the previous case.

• We `complete the exponential martingale' to express the risk-sensitive criterion as

$$J(h;\theta) := -\frac{1}{\theta} \ln \mathbb{E} \left[\exp \left\{ \theta \int_0^T g(t, X(t), h(t); \theta) dt \right\} \chi_T^h \right],$$

where

$$g(s, x, h; \theta) = \frac{1}{2} (\theta + 1) h' \Sigma(s) \Sigma'(s) h - h'(a(s) + A(s)x) - \theta h' \Sigma(s) \Xi'(s) + c(s) + C(s)x - \frac{1}{2} (\theta - 1) \Xi(s) \Xi'(s),$$

and

$$\chi_T^h := \exp\left\{ -\theta \int_0^T \left(h(t)' \Sigma(t) - \Xi(t) \right) dW(t) - \frac{1}{2} \theta^2 \int_0^T \left(h'(t) \Sigma(t) - \Xi(t) \right) \left(\Sigma'(t) h(t) - \Xi'(t) \right) dt \right\}$$

• We also assume that the investment strategy h(t) is in class $\mathscr{A}(T)$.

• Definition 2.5 (Class $\mathscr{A}(T)$)

A \mathbb{R}^m -valued control process h(t) is in class $\mathscr{A}(T)$ if the following conditions are satisfied:

(i) h(t) is progressively measurable with respect to $\left\{\mathscr{B}([0,t])\otimes\mathscr{F}_{t}^{Y}\right\}_{t\geq0}$ and is càdlàg;

(ii)
$$P\left(\int_0^T \left|h(s)\right|^2 ds < +\infty\right) = 1;$$

(iii) the Doléans exponential χ_T^h is an exponential martingale, thus $\mathbb{E}\left[\chi_T^h\right] = 1$.

• Let \mathbb{P}_h be the measure on (Ω, \mathscr{F}_T) defined via the Radon-Nikodym derivative $\frac{d\mathbb{P}_h}{d\mathbb{P}} := \chi_T^h$.

• Under the **measure** \mathbb{P}_h ,

$$W^{h}(t) := W(t) + \theta \int_{0}^{t} \left(\Sigma'(s)h(s) - \Xi'(s) \right) ds$$

is a standard Brownian motion for $h \in \mathscr{A}(T)$ and the risk-sensitive control criterion is

$$J^{h}(h;\theta) = -\frac{1}{\theta} \ln \mathbb{E}^{h} \left[\exp \left\{ \theta \int_{0}^{T} g(t, X(t), h(t); \theta) ds \right\} \right],$$

where $\mathbb{E}^{h}[\cdot]$ denotes the expectation taken with respect to the measure \mathbb{P}_{h} .

• The dynamics of the factors X(t) under the new measure,

$$dX(t) = \left[b(t) + B(t)X(t) - \theta\Lambda(t)\left(\Sigma'(t)h(t) - \Xi'(t)\right)\right]dt + \Lambda(t)dW^{h}(t), t \in [0,T],$$

is a **controlled diffusion process** that depends on the investment strategy h(t).

- We cannot conclude directly.
 - The function g depends on the stochastic process X(t), so the solution is no longer deterministic.
- However,
 - the change of measure has expressed our risk-sensitive investment problem as a standard linear-quadratic-Gaussian risk-sensitive control problem, with

a controlled state process X(t) that is a linear and Gaussian and

a reward function g quadratic in its h argument and linear in its x argument.

 This problem is a special case of Jacobson's LEQG problem (Jacobson, 1973; Bensoussan, 1992), which we can solve efficiently using dynamic programming methods.

The Hamilton-Jacobi-Bellman equation

• Let $\Phi(t, x) := \sup_{h \in \mathcal{A}(T)} J^h(t, x; h; T, \theta)$ be the value function for the control problem, with associated Hamilton-Jacobi-Bellman partial differential equation:

$$\frac{\partial \Phi}{\partial t}(t,x) + \sup_{h \in \mathbb{R}^m} L_t^h(t,x,D\Phi,D^2\Phi) = 0,$$

where
$$D\Phi = \left(\frac{\partial\Phi}{\partial x_1}, \dots, \frac{\partial\Phi}{\partial x_i}, \dots, \frac{\partial\Phi}{\partial x_n}\right)^{'}, D^2\Phi = \left[\frac{\partial^2\Phi}{\partial x_i\partial x_j}\right], i, j = 1, \dots, n, \text{ and}$$

 $L_t^h(t, x, p, M) = \left(b(t) + B(t)x - \theta\Lambda(t)\Sigma'(t)h\right)^{'}p + \frac{1}{2}\text{tr}\left(\Lambda(t)\Lambda(t)'M\right)$
 $-\frac{\theta}{2}p'\Lambda(t)\Lambda(t)'p - g(t, x, h; \theta),$

for $p \in \mathbb{R}^n$ and subject to terminal condition $\Phi(T, x) = 0$.

• The term inside the sup is quadratic in *h*. Its unique maximizer corresponds to the candidate optimal control

$$\hat{h}(t,x,p) = \frac{1}{\theta+1} \left(\Sigma(t) \Sigma'(t) \right)^{-1} \left[a(t) + A(t)x + \theta \Sigma(t) \left(\Xi'(t) - \Lambda'(t)p \right) \right],$$

where (t, x, p) stands in for $(t, X(t), D\Phi(t, X(t)))$.

- Moreover, the value function $\Phi(t, x) = \frac{1}{2}x'Q(t)x + x'q(t) + k(t)$, where Q(t) is the unique symmetric non-negative solution to the matrix Riccati equation, q(t) solves a linear ODE, and k(t) is found by integration. Specifically,
- Q(t) solves

٠

$$\begin{split} \dot{Q}(t) - Q(t)K_0(t)Q(t) + K_1'(t)Q(t) + Q(t)K_1(t) + \frac{1}{\theta+1}A'(t)\big(\Sigma(t)\Sigma'(t)\big)^{-1}A(t) = 0, \\ \end{split}$$
 where $K_0(t) = \theta \left[\Lambda(t) \bigg(I - \frac{\theta}{\theta+1}\Sigma'(t)\big(\Sigma(t)\Sigma'(t)\big)^{-1}\Sigma(t)\bigg) \Lambda'(t) \bigg], \\ K_1(t) = B(t) - \frac{\theta}{\theta+1}\Lambda(t)\Sigma'(t)\big(\Sigma(t)\Sigma'(t)\big)^{-1}A(t), \end{split}$

and *I* is the $n \times n$ identity matrix.

• The vector-valued function q(t) solves

$$\dot{q}(t) + \left(K_{1}'(t) - Q(t)K_{0}(t)\right)q(t) + Q(t)\left(b + \theta\Lambda(t)\Xi'(t)\right) + \frac{1}{\theta+1}\left(A'(t) - \theta Q(t)\Lambda(t)\Sigma(t)\right)\left(\Sigma(t)\Sigma'(t)\right)^{-1}\left(a + \theta\Sigma(t)\Xi'(t)\right) - C(t) = 0,$$
and $k(t) = \int_{t}^{T} \ell'(t)dt$, where
$$\ell(s) = \frac{1}{2}\operatorname{tr}\left(\Lambda(t)\Lambda'(t)Q(t)\right) - \frac{\theta}{2}q'(t)\Lambda(t)\Lambda'(t)q(t) + b'(t)q(t) + \frac{1}{2}\frac{1}{\theta+1}a'(t)\left(\Sigma(t)\Sigma'(t)\right)^{-1}a(t) + \frac{1}{2}\frac{\theta^{2}}{\theta+1}q'(t)\Lambda(t)\Sigma'(t)\left(\Sigma(t)\Sigma'(t)\right)^{-1}\Sigma(t)\Lambda'(t)q(t) - \frac{\theta}{\theta+1}q'(t)\Lambda(t)\Sigma'(t)\left(\Sigma(t)\Sigma'(t)\right)^{-1}\Delta(t)\Sigma'(t)\left(\Sigma(t)\Sigma'(t)\right)^{-1}\Sigma(t)\Xi'(t) + \theta\Xi(t)\Lambda'(t)q(t) - \frac{1}{2}(\theta-1)\Xi(t)\Xi'(t) + \frac{\theta}{\theta+1}a'(t)\left(\Sigma(t)\Sigma'(t)\right)^{-1}\Sigma(t)\Xi'(t) + \frac{1}{2}\frac{\theta^{2}}{\theta+1}\Xi(t)\Sigma'(t)\left(\Sigma(t)\Sigma'(t)\right)^{-1}\Sigma(t)\Xi'(t).$$

- A standard verification argument completes the resolution of the stochastic control problem. The following Theorem summarizes these results.
- Theorem (Risk-Sensitive Benchmarked Asset Management)
 - (i) The value function Φ is the unique $C^{1,2}$ solution to associated HJB PDE. It has the form $\Phi(t, x) = \frac{1}{2}x'Q(t)x + x'q(t) + k(t)$.
 - (ii) There is a unique Borel measurable maximiser $\hat{h}(t, x, p)$ for $(t, x, p) \in [0,T] \times \mathbb{R}^n \times \mathbb{R}^n$ given by $\hat{h}(t, x, p) = \frac{1}{\theta + 1} \left(\Sigma(t) \Sigma'(t) \right)^{-1} \left[a(t) + A(t)x + \theta \Sigma(t) \left(\Xi'(t) - \Lambda'(t)p \right) \right].$

(iii) The maximizer is optimal, meaning $h^*(t, X(t)) = \hat{h}(t, X(t), D\Phi(t, X(t)))$.

Proposition: Fractional Kelly Strategy (FKS)

- The optimal investment strategy $h^*(t, \hat{X}(t))$ consists of an allocation between three funds: h^K , h^{Bench} , and h^{PIHP} .
 - (i) The fund h^{K} is a Kelly portfolio with factor-dependent allocation

 $h^{K}(t, X(t)) = (\Sigma(t)\Sigma'(t))^{-1} (a(t) + A(t)X(t)).$

(ii) The fund h^{Bench} a **benchmark-tracking portfolio** with deterministic allocation

 $h^{\text{Bench}}(t) = (\Sigma(t)\Sigma'(t))^{-1}\Sigma(t)\Xi'(t).$

(iii) The fund h^{IHP} is an Intertemporal Hedging Portfolio (IHP) with factor-dependent allocation

$$h^{IHP}(t,X(t)) = (\Sigma(t)\Sigma'(t))^{-1}\Sigma(t)\Lambda(t)'(q(t) + Q(t)X(t)).$$

• The relative allocation of each fund is constant at $f := \frac{1}{\theta + 1}$ for h^{K} , 1 - f for h^{Bench} , and f - 1 for h^{IHP} .

The Active \leftrightarrow Passive Continuum Summarized

The Active \leftrightarrow Passive Continuum Summarized

Case 3: RSIM with unobservable factors and expert opinions

- We remove the assumption that the factors are observable in real-time because in reality **factors may not be observable**.
 - Statistical variables, such as latent variables, are usually unobservable.
 - **Macroeconomic variables** are typically monthly or quarterly, with a lag and, possibly, revisions.
 - Empirical asset pricing factors are often constructed *ex-post* based on portfolio performance.
- However, removing this assumption raises two fundamental questions.
 - How are we going to estimate the factors?
 - What is the effect of unobservable factors on the stochastic control problem?

Filter Setup

- In dynamical systems, **filtering techniques** provide a natural way to
 - estimate the current value of a set of variables, called the state variables,
 - from another set of related but noisy variables, called the observation variables.

Filtering to Estimate the Factor Process

- In Case 3, the state variables are the factors, and observations can come from:
 - Asset prices depend on factor values, so they are relevant to estimating *X*. We can observe their prices directly on the financial market. While asset prices are a natural start, relying exclusively on them has the downside of favoring momentum strategies.
 - **Expert forecasts** and opinions offer another popular source of observations to complement asset prices. Experts include financial analysts, economists, policy experts, and nowcasting models.
 - This approach produces a dynamical model in the spirit of Black and Litterman (1992).
 - Expert opinions may exhibit **behavioral biases**. Davis and Lleo (2016, 2020) show how to identify and mitigate behavioral biases.
 - Alternative data are time series constructed from structured and unstructured data. Some examples include usage trends, product review trends, and sentiment indexes.
 - Davis and Lleo (2022) propose a risk-sensitive benchmarked model that combines asset prices, expert forecasts, and alternative data as observations.
 - Alternative data often feature non-Gaussian noise, so they are best modeled using jump-diffusion processes which are outside of the scope of this article.

Photo courtesy of Pixabay

Effect of unobservability on the stochastic control problem

- The kind of stochastic control problem we need to solve is a **partial observation problem**.
- Partial observation problems are notoriously difficult to solve because they require simultaneously estimating the state and optimizing the system.
- So, can we perform these two tasks separately?
- **Separation** is a good idea in practice, but it may produce a suboptimal solution.
- Fortunately, risk-sensitive investment problems are separable, so we do not lose optimality by estimating first and then optimizing (see Lleo and Runggaldier, 2023).
- This is great news because:
 - We can **implement the filter directly**, as discussed above.
 - We can reuse the reasoning developed in the previous Case to solve the control problem.
 - We can use filtering to produce portable estimates that we can use in other aspects of asset management business businesses, such as trading and risk management.

Photo courtesy of Pixabay

Case 3: RSIM with unobservable factors and expert opinions

Tradable and Non-Tradable Assets

- In view of the estimation task, we adopt a broader view of the financial market.
- We include all the securities that can help estimate the factors, whether the investor can trade them or not.
- To distinguish between tradable and non-tradable assets, we split the *m* risky assets into an investment universe of $0 < m_1 \le m$ assets that the investor is allowed to trade, and the remaining $m_2 = m m_1 \ge 0$ assets that the investor can only observe.
- Accordingly, we express the securities price vector as $S_t := (S_t^{(1)'} \ S_t^{(2)'})'$, where $S_t^{(1)}$ is the m_1 -vector process of tradable securities prices and $S^{(2)}$ is the m_2 -vector process of untradable, but observable, securities prices.
- We perform a similar decomposition for the vector- and matrix-valued functions a, A and Σ . We denote by $a^{(1)}, A^{(1)}$ and $\Sigma^{(1)}$ the subvector and submatrix corresponding to the m_1 tradable assets, with an analogous definition for $a^{(2)}, A^{(2)}$ and $\Sigma^{(2)}$.

Filter Setup

- We gather all these observable processes to construct the observation process Y(t).
 - Discounted financial securities prices and benchmark levels have a geometric dynamics, so they are not suitable observations for the (linear) Kalman filter.
 - We replace them with their excess log returns $\mathfrak{S}(t)$ as $\mathfrak{S}_i(t) = \ln(S_i(t)), i = 1, ..., m$, with affine-Gaussian dynamics

$$d\mathfrak{S}(t) = \left[\left(a(t) - \frac{1}{2} d_{\Sigma}(t) \right) + A(t) X(t) \right] dt + \Sigma(t) dW(t), \mathfrak{S}(0) = \ln(s),$$

where
$$d_{\Sigma}(t) = \left((\Sigma\Sigma')_{11}(t) \quad (\Sigma\Sigma')_{22}(t) \quad \dots \quad (\Sigma\Sigma')_{mm}(t) \right)'.$$

• Similarly, the excess log return vector $l(t) := \ln L(t)$ solves the SDE:

Photo courtesy of Pixabay

• Accordingly, the observation vector $Y(t) := (\mathfrak{S}(t) \ Z(t) \ \mathfrak{l}(t))^{'}$ is affine in the state with Gaussian noise:

•
$$dY(t) = (a_Y(t) + A_Y(t)X(t))dt + \Gamma(t)dW(t), Y(0) = y_0,$$

where

$$a_Y(t) = \begin{pmatrix} a(t) - \frac{1}{2}d_{\Sigma}(t) \\ a_Z(t) \\ c(t) - \frac{1}{2}\Xi'\Xi(t) \end{pmatrix}, \quad A_Y(t) = \begin{pmatrix} A(t) \\ A_Z(t) \\ C(t) \end{pmatrix}, \quad \Gamma(t) = \begin{pmatrix} \Sigma(t) \\ \Psi_Z(t) \\ \Xi'(t) \end{pmatrix}.$$

- Now, let $\mathscr{F}_t^Y = \sigma\{Y(u), 0 \le u \le t\}$ be the filtration generated by the observation process only.
- The conditional distribution of the factor process X(t) is normal $N(\hat{X}(t), P(t))$ where
 - $\hat{X}(t) = \mathbb{E}[X(t) | \mathcal{F}_t^Y]$ satisfies the Kalman filter equation and
 - P(t) is a deterministic matrix-valued function.

 \mathcal{F}_t is the full set of information. It includes everything: factors, securities, benchmark, and expert forecasts. $\mathscr{F}_t^Y = \sigma\{Y(u), 0 \le u \le t\}$ is the subset of information that we get from observing Y(t) only, that is, the securities, benchmark, and expert forecasts.

Kalman Filter: Filtering equations (Davis 1977, Davis and Lleo 2011, 2020)

• The Kalman estimate $\hat{X}(t)$ is the unique solution of the SDE:

$$d\hat{X}(t) = (b(t) + B(t)\hat{X}(t))dt + \hat{\Lambda}(t)dU(t), \qquad \hat{X}(0) = \mu_0,$$

where $\hat{\Lambda}(t) = \left(\Lambda \Gamma(t)' + P(t)A'_Y\right) \left(\Gamma(t)\Gamma(t)'\right)^{-1/2}$.

• The variance P(t) is the unique non-negative definite symmetric solution of the matrix Riccati equation

$$\begin{split} \dot{P}(t) &= \Lambda \Upsilon^{\perp} \Lambda' - P(t) A'_{Y} \left(\Gamma(t) \Gamma(t)' \right)^{-1} A_{Y} P(t) + \left(B(t) - \Lambda \Gamma(t)' \left(\Gamma(t) \Gamma(t)' \right)^{-1} A_{Y} \right) P(t) \\ &+ P(t) \left(B(t)' - A'_{Y} \left(\Gamma(t) \Gamma(t)' \right)^{-1} \Gamma(t) \Lambda' \right), \qquad P(0) = P_{0}, \end{split}$$
with
$$\Upsilon^{\perp} := I - \Gamma(t)' \left(\Gamma(t) \Gamma(t)' \right)^{-1} \Gamma(t).$$

• The **innovation** process U(t) defined by

$$dU(t) = \left(\Gamma(t)\Gamma(t)'\right)^{-1/2} (dY^{1}(t) - A_{Y}\hat{X}(t)dt), \qquad U(0) = 0$$

is a \mathbb{R}^{m+K} -valued (\mathcal{F}_t^Y) -Brownian motion on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, \mathbb{P})$.

- As a final step in the application of the filter, we decompose the $(m + k + 1) \times (m + k + 1)$ matrix $(\Gamma(t)\Gamma'(t))^{1/2}$ as $(\Gamma(t)\Gamma'(t))^{1/2} := (\hat{\Sigma}'(t) \quad \hat{\Psi}'_Z(t) \quad \hat{\Xi}'(t))$, where
 - $\hat{\Sigma}(t)$ is a $m \times (m + k + 1)$ matrix such that $\hat{\Sigma}\hat{\Sigma}'(t) = \Sigma\Sigma'(t)$,
 - $\hat{\Psi}_{Z}(t)$ is a $k \times (m + k + 1)$ matrix such that $\hat{\Psi}_{Z}\hat{\Psi}_{Z}(t)' = \Psi_{Z}\Psi_{Z}(t)'$, and
 - $\hat{\Xi}(t)$ is a (m + k + 1)-element vector such that $\hat{\Xi}\hat{\Xi}'(t) = \Xi\Xi'(t)$
 - and where we are using the notational shortcut $\Gamma\Gamma(t)'$ for $\Gamma(t)\Gamma(t)'$, $\Sigma\Sigma(t)'$ for $\Sigma(t)\Sigma(t)'$, etc.

- Having completed the estimation task, we move to the optimisation.
- The stochastic control problem is separable, so we simply `substitute' the Kalman filter estimate $\hat{X}(t)$ for the unobservable factor value X(t) in the risk-sensitive criterion:

$$\begin{split} J(h;\theta) &:= -\frac{1}{\theta} \ln \mathbb{E} \left[\exp \left\{ -\theta \int_0^T \left(-\frac{1}{2} h'(t) \hat{\Sigma}_1 \hat{\Sigma}_1'(t) h(t) + h'(t) a_1(t) + \frac{1}{2} \hat{\Xi} \hat{\Xi}'(t) - c(t) \right) \right. \\ &\left. + \left(h'(t) A_1(t) - C(t) \right) \hat{X}(t) dt - \theta \int_0^T \left(h'(t) \hat{\Sigma}_1(t) - \hat{\Xi}(t) \right) dU(t) \right\} \right], \end{split}$$

where the dynamics of $\hat{X}(t)$ is given by the Kalman filter.

- A standard verification argument completes the resolution of the stochastic control problem. The following Theorem summarizes these results.
- Theorem (Risk-Sensitive Benchmarked Asset Management)

(i) The value function
$$\Phi$$
 is the unique $C^{1,2}$ solution to associated HJB PDE.
It has the form $\Phi(t, \hat{x}) = \frac{1}{2}\hat{x}'Q(t)\hat{x} + \hat{x}'q(t) + k(t)$.

(ii) There is a unique Borel measurable maximiser $\hat{h}(t, x, p)$ for $(t, x, p) \in [0,T] \times \mathbb{R}^n \times \mathbb{R}^n$ given by $\hat{h}(t, \hat{x}, p) = \frac{1}{\theta + 1} \left(\hat{\Sigma}_1 \hat{\Sigma}'_1(t) \right)^{-1} \left[a_1(t) + A_1(t)\hat{x} + \theta \hat{\Sigma}_1(t) \left(\hat{\Xi}'(t) - \hat{\Lambda}'(t)p \right) \right].$

(iii) The maximizer is optimal, meaning $h^*(t, \hat{X}(t)) = \hat{h}\left(t, \hat{X}(t), D\Phi(t, \hat{X}(t))\right)$.

Proposition: Fractional Kelly Strategy (PFKS)

- The optimal investment strategy $h^*(t, \hat{X}(t))$ consists of an allocation between three funds: h^K , h^{Bench} , and h^{PIHP} .
 - (i) The fund h^{K} is a **personal Kelly portfolio** with factor-dependent allocation

$$h^{K}(t, \hat{X}(t)) = (\hat{\Sigma}_{1} \hat{\Sigma}_{1}'(t))^{-1} \left(a_{1}(t) + A_{1}(t) \hat{X}(t) \right).$$

(ii) The fund h^{Bench} a **benchmark-tracking portfolio** with deterministic allocation

$$h^{\mathsf{Bench}}(t) = (\hat{\Sigma}_1 \hat{\Sigma}_1'(t))^{-1} \hat{\Sigma}_1(t) \hat{\Xi}'.$$

(iii) The fund h^{IHP} is an Intertemporal Hedging Portfolio (IHP) with factor-dependent allocation

$$h^{PIHP}(t, \hat{X}(t)) = (\hat{\Sigma}_1 \hat{\Sigma}_1'(t))^{-1} \hat{\Sigma}_1(t) \hat{\Lambda}(t)' \left(q(t) + Q(t) \hat{X}(t) \right).$$

• The relative allocation of each fund is constant at $f := \frac{1}{\theta + 1}$ for h^{K} , 1 - f for h^{Bench} , and f - 1 for h^{IHP} .

The Active \leftrightarrow Passive Continuum Summarized

A Word of Thanks

I extend my heartfelt gratitude to

✓ Paul Wilmott,

✓Riaz Ahmad,

✓ Paul Shaw and 7City,

✓ Randeep Gug and the team at FitchLearning.

Being part of the CQF in 2003 changed my life.

To all my CQF students, past, present, and future, in the \mathbb{P} - or any other measure.

To an absent friend of our community

Professor William T. Ziemba, a.k.a. Doctor Z.

Happy Birthday, CQF & Wilmott Mag!!!

