The P2P pandemic swap: decentralized pandemic-linked securities

Samal Abdikerimova, Runhuan Feng, Daniël Linders1

Quant Minds 2023

November 1 - 2, 2023

1University of Amsterdam, email: d.h.linders@uva.nl
Pandemic risk management

Insurability of pandemic risks

- Pandemic risk is **systematic**
 - A pandemic crosses national borders.
 - Pandemic losses in different countries are strongly positive dependent.
 - Diversification of pandemic risks is difficult.

- **Heterogeneous** risks:
 - Each country has its own severity distribution.
 - When and how much extra capital is needed depends on the country.

- **Size** of the pandemic losses
 - exceeds the capacity of the insurance market;
 - Pandemic risks **cannot** be fully covered by traditional insurance.
 - German Insurance Association (2020) and Richter & Wilson (2020).
1 – Pandemic risk management

Solutions

- **Solution 1:** Peer-to-peer network of countries
 - Countries pool (part of) their pandemic losses together
 - and each country pays a predetermined share of the losses.
 - P2P networks can cope with heterogeneous risks.
 - Abdikerimova & Feng (2022) and Denuit, Dhaene & Robert (2022).

- **Solution 2:** Insurance-linked securities
 - Similar to CAT bonds, one can transfer the pandemic losses to the financial market using insurance-linked securities.
 - The capacity of the financial market can be used for absorbing the pandemic losses.
 - Benefits to investors
 - Investors receive a periodical premium.
 - A pandemic bond may be used to diversify a portfolio.
Pandemic Financing Facility Fund\(^2\):
- Goal: Transfer funds to poor countries in case they are hit by a major pandemic.
- A pandemic bond was introduced to provide the insurance coverage.

Pandemic bond:
- Investors fund the World Bank by paying a principal at initiation.
- Donor countries (Australia, Germany and Japan) provide a series of coupon payments to compensate the investors.
- In case of a pandemic, (part of) the principal is used to fund countries in need to respond to the pandemic.

\(^2\)More information can be found [here](#)
Drawbacks of the World Banks’ pandemic bond

- **Slow triggering mechanism:**
 - The bond only paid out in 3 cases out of 60 pandemics.
 - More than 100 million USD was paid out to investors via the coupons.

- **Donor fatigue:**
 - The 3 donor countries only contribute and have no future benefits.
 - The receiving countries only receive in case of a pandemic.

- **Triggers are not country specific:**
 - The bond cannot differentiate between countries.
We introduce the class of **P2P Pandemic-linked securities.**

- Transfer part of the pandemic risk to the financial market:
 - similar to CAT bonds, longevity bonds, etc.
- Use a peer-to-peer network between countries.
 - mutual support between countries.
3 – The P2P pandemic swap

Structure

- **Participants:**
 - **investors:** provide insurance against pandemic risk in return for a periodic premium.
 - **Pool of countries:** collectively pay the insurance premium and support each other in case of a pandemic.

- **Payments:**
 - **Fixed periodical premiums:** Transferring the losses to the investors will require paying a fixed premium.
 - **Random losses:** Whenever a pandemic loss occurs, part of these random losses will be covered by the investors.
The countries are organised in a P2P network
- s_j: benefit of country j.
- α_{ij}: proportion country i pays to country j.

$\alpha_{ij} \times s_j = $ Loss payment of country i to country j.

Pandemic swap:
- Insurance for the losses which are not covered by the pool.

$\alpha_{0j} \times s_j = $ Amount the investors pay to country j.

Max amount covered by the bond:

$$ F = \sum_{j=1}^{n} \alpha_{0j}s_j. $$
3 – The P2P pandemic swap

The investors

- **Premium Income:**
 - Payment dates:
 \[t_1 < \ldots < t_N = T. \]
 - Equidistant time grid: \(\Delta_t = t_2 - t_1. \)
 - The pool of countries collectively fund the premiums:
 \[
cF \Delta_t = \text{Premium paid at each payment date}
\]

- **Benefit payments:**
 - Premium payments stop when the *first payment* is triggered.
 - The investors pay part of the benefit amount.
 - The maximal amount paid by the investors is \(F. \)
Conditions for the payments

- **Conservation of zero balance for risk sharing**

\[
\sum_{i=0, i\neq j}^{n} \alpha_{ij} = 1, \quad \text{for } j = 1, 2, \ldots, n. \tag{1}
\]

- The contributions of the investors and countries are sufficient to cover the payment \(s_j \) to country \(j \).

- **Collective payment of premiums**

\[
\sum_{i=1}^{n} \alpha_{i0} = 1. \tag{2}
\]

- The aggregate contributions of the countries are sufficient to cover the premium payment \(Fc\Delta t \).
Conditions for the payments

- **Principle of indemnity**

 \[0 \leq \alpha_{ij} \leq 1, \quad i, j \geq 0. \]

 ▶ The amount country \(i \) pays to country \(j \) in case of a pandemic event, should never exceed the insured amount \(s_j \).

 ▶ No one should make a profit, i.e. \(\alpha_{ij} \geq 0 \).

- **Maximum principal loss.**

 \[\sum_{j=1}^{n} s_j \alpha_{0j} = F. \]

 ▶ In the most extreme event where all countries will be triggered, the full amount \(F \) will be used.
Define the process \(\{ J_i(t) \mid t \in [0,T] \} \) as follows:

\[
J_i(t) = \begin{cases}
0 & \text{if a payment for country } i \text{ is not triggered before } t, \\
1 & \text{if a payment for country } i \text{ is triggered before } t.
\end{cases}
\]

Define for each payment date \(t_j \):

\[
I_i(t_j) = J_i(t_j) - J_i(t_{j-1}).
\]

- \(I_i(t_j) = 1 \): a payment is triggered for country \(i \) in the interval \([t_{j-1}, t_j]\),
- and country \(i \) will receive the benefit amount \(s_i \) at time \(t_j \).
Define:

\[I_0(t) = \prod_{i=1}^{n} (1 - J_i(t)). \]

- If \(I_0(t_j) = 1 \):
 - no payments are triggered before \(t_j \).
 - Investors receive the premium payment \(F c \Delta_t \) at the payment date \(t_j \).

- If \(I_0(t_j) = 0 \):
 - At least one country received a benefit payment in the interval \([0, t_j] \).
 - There are no premium payments during the remaining lifetime of the swap.
Example 1: The WHO pandemic bond

- No payments between countries:
 \[\alpha_{ij} = 0 \text{ for } i, j = 1, 2, \ldots, n. \]

- The first 3 countries are the donor countries:
 \[\alpha_{i0} = 0, \text{ for } i = 4, 5, \ldots, n. \]

 Donor countries will not receive any benefits: \(s_1 = s_2 = s_3 = 0 \).

- The recipient countries receive the benefit payments from the investors:
 \[\alpha_{0i} = 1, \text{ for } i = 4, 5, \ldots, n, \]
 and
 \[\alpha_{01} = \alpha_{02} = \alpha_{03} = 0. \]
Example 2: P2P bond with 2 countries

Consider a pandemic swap with 2 countries.

- Payments between countries: α_{12} and α_{21}.
- Payments from the investors to the countries: α_{01} and α_{02}.
- Premium payments: α_{10} and α_{20}.

Conditions on the premium payments:

$$\alpha_{10} + \alpha_{20} = 1.$$

- The countries can decide how to share the premium payments.
- The premium payments can be determined separately from the loss payments.
The payments from the countries should satisfy the conditions (1), (3) and (4):

Set of possible solutions:

\[\alpha_{21} = \frac{s_1 + s_2 - F - s_2 \alpha_{12}}{s_1},\]
\[\alpha_{01} = 1 - \alpha_{21},\]
\[\alpha_{02} = 1 - \alpha_{12},\]

In order to have \(0 \leq \alpha_{ij} \leq 1:\)

\[\max \left(\frac{s_2 - F}{s_2}, 0\right) \leq \alpha_{12} \leq \min \left(\frac{s_1 + s_2 - F}{s_2}, 1\right).\]
Example 2: P2P bond with 2 countries (cont’d)

![Graph showing benefit transfers α_{01} (black), α_{02} (green), and α_{21} (blue) in function of α_{21}.]

$s_1 = 100$, $s_2 = 200$ and $F = 150$.

Figure. The benefit transfers α_{01} (black), α_{02} (green) and α_{21} (blue) in function of the transfer α_{21}.

$s_1 = 100$, $s_2 = 200$ and $F = 150$.
Example 2: P2P bond with 2 countries (cont’d)

- If α_{12} increases:
 - Country 1 pays a larger share of the benefit of country 2 in case of a pandemic event.
 - The benefit amount s_2 is fixed, therefore the share α_{02} the investors pay decreases.

- If α_{02} decreases:
 - less of the total available funds F of the investors is attributed to country 2,
 - hence more will be allocated to country 1,
 - Then α_{01} increases.

- If α_{01} increases:
 - the investors pay a larger share of the loss of country 1,
 - so the part country 2 pays decreases,
 - hence α_{21} decreases.
The cash flow of country i at time t_j:

$$R_i(t_j) = s_i I_i(t_j) - \alpha_{i0}Fc \Delta t I_0(t_j) - \sum_{k=1, k \neq i}^{n} \alpha_{ik}s_k I_k(t_j).$$

- The benefit payment in case of a triggering pandemic event.
- The premium payment in case no payment was yet triggered.
- P2P payments to other countries.

The time-0 cash flow for country i:

$$R_i = \sum_{j=1}^{N} e^{-rt_j} R_i(t_j),$$

where r is the risk-free rate which is assumed to constant.
The expected return for the countries and the investors

- **Rewrite** R_i:

\[
R_i = s_i I_i - \alpha_{i0} Fc \Delta t I_0 - \sum_{k=1, k \neq i}^{n} \alpha_{ik} s_k I_k,
\]

where $I_i = \sum_{j=1}^{N} e^{-r_j t_j} I_i(t_j)$.

- **Notation**:

\[
\mathbb{E}[I_i] = q_i, \text{ for } i = 1, \ldots, n.
\]

\[
\mathbb{E}[I_0] = p_0.
\]

- **Expected return for country i**:

\[
\mathbb{E}[R_i] = s_i q_i - \alpha_{i0} (Fc \Delta t) p_0 - \sum_{k=1, k \neq i}^{n} \alpha_{ik} s_k q_k.
\]
Fairness of a P2P pandemic swap:

- The P2P pandemic swap is **fair** if the expected return for each country is zero:

\[\mathbb{E}[R_i] = 0, \text{ for } i = 1, 2, \ldots, n. \]

Result:

- The expected time-0 return of the investors

\[\mathbb{E}[R_0] = (Fc\Delta t)p_0 - \sum_{k=1}^{n} s_k \alpha_{0k} q_k . \]

- If the P2P bond is fair, we have that \(\mathbb{E}[R_0] = 0. \)
Allocate the available capital F to the different countries.

Determine $\alpha_0, \alpha_1, \ldots, \alpha_n$ such that

$$\sum_{i=1}^{n} \alpha_0 s_i = F.$$

The fairness condition for the investors implies that

$$c = \frac{\sum_{k=1}^{n} s_k \alpha_0 q_k}{F p_0 \Delta t}.$$

Putting more weight on risky countries, i.e. countries with higher trigger probability, will increase the riskiness of the pandemic swap, which increases the premium c.
Countries and investors should cover the full loss amount.

\[\sum_{i=1, i \neq k}^{n} \alpha_{ik} = 1 - \alpha_{0k}, \text{ for } k = 1, 2, \ldots, n. \]

- \(\alpha_{ik} \) = the proportion of the loss of country \(k \) paid by country \(i \).
- \(n \) equations and \(n(n-1) \) unknowns.

Fairness conditions:

\[\alpha_{i0} = \frac{s_i q_i - \sum_{k=1, k \neq i}^{n} \alpha_{ik} s_k q_k}{F c \Delta t p_0}. \]

- We have that \(\sum_{i=1}^{n} \alpha_{i0} = 1. \)
We solve the following problem

\[\begin{align*}
\text{maximize} \quad & f = \sum_{i=1}^{n} \sum_{j \neq i}^{n} v(\alpha_{ij}) \\
\text{subject to} \quad & \sum_{i=1}^{n} \sum_{j \neq i}^{n} \alpha_{ij} = 1 - \alpha_{0k}, \text{ for } k = 1, 2, \ldots, n. \\
& \sum_{k=1}^{n} \alpha_{ik}s_kq_k \leq s_iq_i, \text{ for } i = 1, 2, \ldots, n.
\end{align*}\]

We maximize the mutual support between countries:

- \(v \) is a concave and non-decreasing function.
Closed-form solution

- Assume:

\[\sum_{\substack{k=1 \atop k \neq i}}^{n} (1 - \alpha_{0k}) s_k q_k \leq (n - 1) s_i q_i, \text{ for } i = 1, 2, \ldots, n.\]

- A solution to the maximization problem:

\[\alpha_{ik} = \frac{1 - \alpha_{0k}}{n - 1}, \text{ for } i = 1, 2, \ldots, n.\]
The time that the payment for country i is triggered is τ_i.

Denote the intensity for country i by λ_i:

$$\Pr[\tau_i > t] = e^{-\lambda_i t}.$$

Then:

$$q_i = \frac{(1 - e^{-\lambda_i \Delta t}) e^{-(\lambda_i + r) \Delta t} (1 - e^{-(\lambda_i + r) T})}{1 - e^{-(\lambda_i + r) \Delta t}}.$$

In order to model the premium payments, we need the dependence structure between the random variables τ_i.
An intensity model: dependence

- **Ordered probabilities:**

 \[e^{-\lambda_1} \geq e^{-\lambda_2} \geq \ldots \geq e^{-\lambda_n}. \]

 - Country 1 is the safest country. Country \(n \) is the riskiest.

- **We assume:**

 \[\mathbb{P}[\tau_{i+1} \leq t | \tau_i \leq t] = 1, \text{ for } i = 1, 2, \ldots, n - 1. \]

 - If a payment for country \(i \) was triggered before \(t \), all riskier countries also received their benefit payment before time \(t \).
Triggers are ordered:

- The first country to receive a benefit payment is the riskiest country, followed by the 2nd riskiest country, etc.
- See also Dhaene & Goovaerts (1997).

Premium payments:

\[\mathbb{E} [I_0] = p_0 = \frac{e^{-(\lambda_n + r)\Delta t} \left(1 - e^{-(\lambda_n + r)T}\right)}{(1 - e^{-(\lambda_n + r)\Delta t})} . \]

- The expectation only depends on the intensity of the riskiest country.
The single-trigger case

Assume a single trigger:

\[I_i = I, \text{ for } i = 1, 2, \ldots, n. \]

- The probability and moment of triggering a pandemic loss payment is the same for each country.
- If the P2P pandemic swap pays losses, it will pay to all countries at a single moment.
- However, the insured amounts \(s_i \) can be different.
6 – Examples
The single-trigger case

- **Coupon:**

 \[c = \frac{q}{\Delta_t p_0} \approx \lambda. \]

 - \(\lambda \): the intensity of the single trigger.

 - The P2P pandemic swap behaves as a defaultable bond with zero recovery; see e.g. De Spiegeleer & Schoutens (2019).

- **Payments of the countries:**

 \[\alpha_{i0} = \frac{s_i - \sum_{k=1}^{n} \alpha_{ik} s_k}{F}. \]
Consider a group of n countries.

Single-trigger mechanism:

$$I_i = I, \text{ for } i = 1, 2, \ldots, n.$$

Benefits are the same:

$$s_i = s, \text{ for } i = 1, 2, \ldots, n.$$

Coupon payments: α_{10}

- Each country pays the same share α_{10} of the total coupon payment:

$$\alpha_{10} = \frac{1}{n}$$
The Homogeneous case

- **Investors:**
 - In case a country is eligible to receive a loss payment, the investors pay the proportion α_0:
 \[\alpha_0 = \frac{F}{sn}. \]

- **Mutual support: α_1**
 - Each country pays the same amount $\alpha_1 \times s$ to cover losses of other countries:
 \[\alpha_1 = \frac{1}{n-1} - \frac{F}{sn(n-1)}. \]

- In the homogeneous case, the payments α are determined using the feasibility constraints.
Consider two countries and a fair P2P pandemic swap.

\[
\alpha_{12} = 1 - \frac{F}{s_2} \left(\frac{c\Delta t p_0 - q_1}{q_2 - q_1} \right)
\]

\[
\alpha_{21} = 1 - \frac{F}{s_1} \left(\frac{q_2 - c\Delta t p_0}{q_2 - q_1} \right)
\]

\[
\alpha_{10} = \frac{1}{F c \Delta t p_0} \left(s_1 q_1 - s_2 q_2 + F q_2 \frac{c\Delta t p_0 - q_1}{q_2 - q_1} \right)
\]

\[
\alpha_{20} = 1 - \frac{1}{F c \Delta t p_0} \left(s_1 q_1 - s_2 q_2 + F q_2 \frac{c\Delta t p_0 - q_1}{q_2 - q_1} \right)
\]

\[
\alpha_{01} = \frac{F}{s_1} \left(\frac{q_2 - c\Delta t p_0}{q_2 - q_1} \right)
\]

\[
\alpha_{02} = \frac{F}{s_2} \left(\frac{c\Delta t p_0 - q_1}{q_2 - q_1} \right).
\]
Figure. Solid lines: payments of the investors to country 1 (blue) and country 2 (red). Dashed lines are the payments between countries.
Figure. The proportion of the premium payment paid by country 1 (blue) and country 2 (red).
Figure. The degree of mutual support between countries.
Thank you for your attention!

And now, the end is near, and so I face the final curtain ...

German Insurance Association (GDV). 2020. Green paper—Supporting the economy to better cope with the consequences of future pandemic events.

