Correlation stress testing of stock and credit portfolios

Natalie Packham

joint work with Fabian Woebbeking

CQF Institute 3 March 2021

How do you obtain plausible correlation stress scenarios?

- Please type your answer / idea into the chat.
- Wait before you press 'Return'.

Motivation for correlation stress-testing

London Whale

Background Correlation parameterisation Stress testing correlations

Generalised approach

Principal ideas Bayesian factor selection Results

- Correlation lies at the heart of many financial applications: portfolio risk-management, diversification, hedging.
- Principal idea: link economically meaningful scenarios to correlation scenarios
- Stress testing: portfolio effect of adverse correlation scenario
- Reverse stress testing: identify worst-case scenarios and their impact
- First application: correlation stress testing of "London Whale" portfolio

Packham, N. and Woebbeking, F.: A factor-model approach for correlation scenarios and correlation stress-testing. Journal of Banking and Finance, 101 (2019), 92-103. [Ink

Current work: generalisation to credit and stock portfolios

Motivation for correlation stress-testing

Motivation for correlation stress-testing

London Whale

Background Correlation parameterisation Stress testing correlations

Generalised approach

Motivation for correlation stress-testing

London Whale Background Correlation parameter

Stress testing correlations

Generalised approach

The "London Whale"

- "London Whale": 2012 Loss at JPMorgan Chase & Co. of approx.
 6.2 bn USD on a credit derivatives portfolio
- Authorised trading position, hence risk management problem
- Synthetic credit portfolio (SCP): 120 long and short positions, CDX and iTraxx index + tranche products, investment grade and high-yield
- "Smart short" strategy: credit protection on high yield is financed by selling protection on investment grade indices.
- ► Timeline:
 - End of 2011: decision to reduce SCP's risk-weighted assets (RWA's).
 - Avoid liquidation costs by increasing positions with opposite market sensitivity (hedges).
 - 23 March 2012: Senior executives ordered to stop trading on SCP; net notional of 157 bn USD (up 260% from September 2011).
- Risk management of SCP focussed on value-at-risk (VaR) and CSW-10 (credit spread widening of 10 basis points).

▶ Publicy available information: JPMorgan, 2013; United-States-Senate, 2013a,b London Whale

The "London Whale"

- "London Whale": 2012 Loss at JPMorgan Chase & Co. of approx.
 6.2 bn USD on a credit derivatives portfolio
- Authorised trading position, hence risk management problem
- Synthetic credit portfolio (SCP): 120 long and short positions, CDX and iTraxx index + tranche products, investment grade and high-yield
- "Smart short" strategy: credit protection on high yield is financed by selling protection on investment grade indices. (

 correlation risk)
- Timeline:
 - End of 2011: decision to reduce SCP's risk-weighted assets (RWA's).
 - Avoid liquidation costs by increasing positions with opposite market sensitivity (hedges). (

 correlation risk)
 - 23 March 2012: Senior executives ordered to stop trading on SCP; net notional of 157 bn USD (up 260% from September 2011).
- Risk management of SCP focussed on value-at-risk (VaR) and CSW-10 (credit spread widening of 10 basis points).

Publicy available information: JPMorgan, 2013; United-States-Senate, 2013a,b London Whale

The "London Whale" positions

Table: Top 10 Positions of SCP, 23 March 2012, USD net notional; several positions have a market share close to 50%.

	Ir	ndex			
Name	Series	Tenor	Tranche (%)	Protection	Net Notional (\$)
CDX.IG	9	10yr	Untranched	Seller	72,772,508,000
	9	7yr	Untranched	Seller	32,783,985,000
	9	5yr	Untranched	Buyer	31,675,380,000
iTraxx.EU	9	5yr	Untranched	Seller	23,944,939,583
	9	10yr	22 - 100	Seller	21,083,785,713
	16	5yr	Untranched	Seller	19,220,289,557
CDX.IG	16	5yr	Untranched	Buyer	18,478,750,000
	9	10yr	30 - 100	Seller	18,132,248,430
	15	5yr	Untranched	Buyer	17,520,500,000
iTraxx.EU	9	10yr	Untranched	Seller	17,254,807,398
Net Total					137,517,933,681

Data source: United-States-Senate (2013a, Exhibit 36) and DTCC (2014, Section 1, Table 7). London Whale

Motivation for correlation stress-testing

London Whale

Background Correlation parameterisation

Stress testing correlations

Generalised approach

Interest-rate modelling: Correlation parameterisation

Parametric correlation models widespread in

interest-rate modelling / LIBOR market model,

e.g. Rebonato (2002); Brigo (2002); Schoenmakers and Coffey (2000); Packham (2005)

• Simplest case: Correlation c_{ij} between two forward LIBOR's is given by

$$c_{ij} = e^{-\beta|i-j|},$$

where $\beta > 0$ is a parameter, and i, j represent maturities.

 Captures stylised fact that correlations decay with increasing maturity difference

Correlation parameterisation

- Idea: Carry over "distance" measure to other risk factors, such as geographic regions, industries, investment grade vs. high-yield, ...
- $C: n \times n$ -correlation matrix of n financial instruments' returns.
- Factors that determine the correlations: $\mathbf{x} = (x^1, \dots, x^m)'$.
- Correlation of securities i and j modelled as

$$c_{ij} = \exp(-(\beta_1 |x_i^1 - x_j^1| + \beta_2 |x_i^2 - x_j^2| + \dots + \beta_m |x_i^m - x_j^m|),$$

$$i, j = 1, \dots, n,$$

with β_1, \ldots, β_m positive coefficients, determined through calibration.

- ► Functional form implies that the greater "distance" |x_i^k x_j^k|, the greater de-correlation amongst securities i and j.
- ► If two instruments are identical in all respects, then correlation is 1. London Whale

Correlation parameterisation

- Given historical asset returns, parameters β₁,..., β_m are determined e.g. by OLS on transformed correlations - ln(c_{ij}).
- Scenario (e.g. "the correlation between investment grade and high-yield securities decreases") is implemented by increasing corresponding β-parameter.
- With parameters calibrated on a regular basis, the parameter history can be used to obtain reasonable scenarios.

London whale: risk factors and correlation model

- All calculations on SCP portfolio of 23 March 2012 (117 instruments).
- Risk factors: CDX vs. itraxx
 - investment grade vs. high yield
 - maturity
 - index series
 - index vs. tranche
- Parameterised correlation matrix:

$$\begin{split} c_{ij} &= \exp\left(-(\beta_1|\mathsf{isCDX}_i - \mathsf{isCDX}_j| + \beta_2|\mathsf{isIG}_i - \mathsf{isIG}_j| + \beta_3|\mathsf{maturity}_i - \mathsf{maturity}_j| \\ &+ \beta_4|\mathsf{series}_i - \mathsf{series}_j| + \beta_5|\mathsf{isIndex}_i - \mathsf{isIndex}_j|)\right). \end{split}$$

- ▶ Daily calibration of β_1, \ldots, β_5 from credit spread returns of 250 days.
- ► Time period: 1 March 2011 12 April 2012. Data source: Markit London Whale

London Whale: calibration and results

- Correlation matrices of 23 March 2012.
- Left: Empirical correlation matrix
- Right: parameterised (complete) correlation matrix
- Dark red entries: unavailable correlations
- Blocks of highly correlated data: CDX.IG, CDX.HY and iTraxx
 London Whale

London Whale: calibration and results

 Coefficients of CDX and itraxx positions in London Whale position; 01/03/2011–12/04/2012.

 \blacktriangleright Distances normalised to [0,1] to make coefficients comparable.

Motivation for correlation stress-testing

London Whale

Background Correlation parameterisation Stress testing correlations

Generalised approach

Stress-testing correlations

- **Stress-test**: Effect on portfolio due to an adverse scenario.
- A shift in correlation has no *instantaneous* effect on portfolio value, therefore consider **portfolio risk**.
- Portfolio risk measured by value-at-risk (VaR) in variance-covariance approach:

$$\mathsf{VaR}_{\alpha} = -V_0 \cdot \mathrm{N}_{1-\alpha} \cdot \left(\mathbf{w}^{\mathsf{T}} \, \boldsymbol{\Sigma} \, \mathbf{w}\right)^{1/2},$$

with

- current position value V_0 ,
- $N_{1-\alpha}:\;(1-\alpha)\mbox{-quantile}$ of the standard normal distribution,
- vector of portfolio weights \boldsymbol{w} and
- covariance matrix Σ .
- ► For correlation stress test, need to consider portfolio variance

$$\mathbf{w}^{\intercal} \mathbf{\Sigma} \mathbf{w}$$

Core and peripheral risk factors*

- Following e.g. Kupiec (1998), stress scenario comprises
 - "core" risk factors (the ones that are stressed)
 - "peripheral" risk factors (affected by stress).
- ▶ β_s : j < m core factor parameters that are stressed directly
- β_u : remaining m j peripheral risk factor parameters
- In normal distribution setting, optimal estimator of Δβ_u conditional on Δβ_s:

$$\mathbb{E}(\Delta \boldsymbol{\beta}_u | \Delta \boldsymbol{\beta}_s) = \Sigma_{us} \Sigma_{ss}^{-1} \Delta \boldsymbol{\beta}_s,$$

where Σ_{us} and Σ_{ss} denote the covariance and variance matrices of β_u and β_s .

Joint stress test of correlation and volatility*

- Correlation shocks often coincide with volatility shocks, see e.g. (Alexander and Sheedy, 2008; Longin and Solnik, 2001; Loretan and English, 2000).
- Simple model that combines both: **multivariate** *t*-distribution.
- In this case *d*-dimensional vector of asset returns X follows a normal variance mixture distribution with decomposition (e.g. Ch. 6.2 of McNeil *et al.* (2015))

 $\mathbf{X} = \sqrt{V} \cdot A \cdot \mathbf{Z},$

where – $\mathbf{Z} \sim \mathrm{N}(0, I_k)$,

- V is a scalar r.v. independent of \mathbf{Z} ,
- $V \sim \log(1/2\,\nu, 1/2\,\nu)$, i.e., V follows an inverse gamma distribution,
- A is a $d \times k$ matrix such that $\tilde{\Sigma} = AA^T$.

Scenario selection and Mahalanobis distance

- Scenario selection: What is the worst scenario amongst all scenarios that occur within some pre-given probability?
- Let β = (β₁,...,β_m)^T be a random vector with E(β) = β
 and covariance matrix Σ_β.
- Mahalabonis distance:

$$D(\boldsymbol{\beta}) = \left((\boldsymbol{\beta} - \overline{\boldsymbol{\beta}})^{\mathsf{T}} \boldsymbol{\Sigma}_{\boldsymbol{\beta}}^{-1} (\boldsymbol{\beta} - \overline{\boldsymbol{\beta}}) \right)^{1/2}$$

- Maha associated with ellipsoids in normal (or elliptical) distributions.
- Find worst-case scenario within given ellipsoid.

Risk implications from correlation stress-testing

		correlation stress plus vol st			ol stress
Maha level	$VaR_{0.99}$	t -Va $R_{0.99}$	Change(%)	<i>t</i> -VaR _{0.99}	Change(%)
base case	339.32	354.98		354.98	
0.9	372.89	390.10	9.89	464.40	30.83
0.99	381.08	398.67	12.31	617.38	73.92
0.999	386.88	404.74	14.02	780.37	119.84
$unconstrained^*$	620.96	649.62	83.00	1252.53	252.85

*Unconstrained w.r.t. correlation changes; vol stress level at 0.999.

- SCP portfolio's 1-day 99% value-at-risk for different Mahalanobis quantile constraints.
- Percentage changes denote relative distance to base VaR. For joint stress, percentage changes refer to base t-VaR scenario.
- *t*-distribution parameter ν calibrated to 13.5.
- Vol stress level for joint stress test is set to quantile in column one.
 London Whale

Risk-driver identification (reverse stress test)

Figure: Box-plots of correlation parameters.

Dots: observed parameters as of 23.03.2012.

Crosses: worst-case scenario under a 99%-quantile Mahalanobis distance.

Motivation for correlation stress-testing

London Whale

Generalised approach

Principal ideas Bayesian factor selection Results

Motivation for correlation stress-testing

London Whale

Generalised approach Principal ideas Bayesian factor selection

Results

- ▶ Risk factors in "London Whale" were tailored to specific portfolio.
- In practice, factor models use industries and countries as factors to model asset correlations.
- Problem: How to assign factors to assets?

- ▶ Risk factors in "London Whale" were tailored to specific portfolio.
- In practice, factor models use industries and countries as factors to model asset correlations.
- Problem: How to assign factors to assets?
- > Number of factors should be small, but include all important factors.
- **Prior information**: country of firm's headquarter, primary industry
- Agesian variable selection to determine small number of factors driving asset return

Link correlations to risk factors

• Association of asset $i \in \{1, \dots, p\}$ with factor $k \in \{1, \dots, d\}$:

 ${f 1}_{\{k,i\}}$

Correlation parameterisation:

with coefficients $\lambda_1, \ldots, \lambda_d, \nu_1, \ldots, \nu_d \in \mathbb{R}$.

Link correlations to risk factors

- $tanh : \mathbb{R} \to [-1, 1]$ allows for negative correlations.
- ► tanh used in inferential statistics on sample correlation coefficients (~> Fisher transformation).
- The following summation formula is helpful for a rough interpretation of the coefficients:

$$\tanh(x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$$

Motivation for correlation stress-testing

London Whale

Generalised approach Principal ideas Bayesian factor selection Results

Bayesian variable selection

- Different methods, e.g.
 - Bayesian model selection compares posterior probabilities of different models.
 - Spike and slab priors include an indicator variable for each coefficient and determines the indicator variable's posterior probability of taking value one.
- In our setting, Bayesian model selection worked best.

Bayesian model selection

- Denote candidate models by M_i , $i = 1, \ldots, m$.
- ▶ In a linear regression setting, each model *M_i* includes a specific subset of independent variables (= potential risk factors) and excludes the other variables.
- Posterior model probability:

 $p(M_i|\boldsymbol{y}) \propto p(\boldsymbol{y}|M_i)p(M_i),$

where

- y is the time series of a firm's asset returns,
- $p(M_i)$ is the prior model probability,
- $p(\boldsymbol{y}|M_i)$ is called the marginal likelihood.

(see e.g. Appendix B.5.4 of (Fahrmeir et al., 2013))

Bayesian model comparison

Posterior inclusion probabilities (PIP):

$$\mathbf{P}(\mathbf{1}_{\{\beta_k \neq 0\}} = 1 | \boldsymbol{y}) = \sum_{\beta_k \in M_i} \mathbf{P}(M_i | \boldsymbol{y}).$$

- If number of parameters p is large, then full calculation of 2^p posterior model probabilities is infeasible.
- ► ⇒ Use Markov Chain Monte Carlo (MCMC) simulation.

Example: VW

- Daily returns (2002-2018):
 - VW stock returns
 - MSCI stock indices; 11 industries and 24 countries as factors
- ▶ Factors with PIP greater 0.5 are selected:

>>>	<pre>print(res[res['PIP']>0.5].round(4))</pre>							
		coef	PIP	BVS	pvalue			
4	MXWOOCD	Index	1.0000	1.0000	0.0000			
9	MXWOOTC	Index	0.9848	0.9900	0.0017			
10	MXWOOUT	Index	0.9996	1.0000	0.0000			
18	1	ISDUSZ	0.6788	0.4940	0.0105			
19	1	ISDUAT	0.7998	0.7613	0.0000			
34	1	1SDUGR	1.0000	1.0000	0.0000			

- CD (Consumer Discretionary) and GR (Germany) have prior inclusion probability of 1.
- Other prior inclusion probabilities such that eight factors on average.
 Generalised approach

Motivation for correlation stress-testing

London Whale

Generalised approach

Principal ideas Bayesian factor selection

Results

- Factors: MSCI stock indices representing 6 geographic regions and 11 industries
- Individual stocks: 500 S&P constituents, 30 DAX constituents
- Daily data from 1999-Jan 2021 (Source: Bloomberg, MSCI, Reuters)
- Factor assignment re-calibrated every quarter, based on 3-years of daily data (88 quarters)
- Prior: hard-code primary geographic region and industry
- ▶ 6 factors on expectation

Number of quarters that each factor is included for SAP:

Number of quarters that each factor is included for Amazon:

AMZN.O (max dashed)

Correlations at beginning of Covid-19 pandemic

Empirical & fitted correlations; top: 18 Feb, bottom: 18 Mar 2020.
 Generalised approach

Factor coefficients

- Boxplots of coefficients of correlations between factors (left; "λ_k") and within factors (right; "ν_k").
- Intra-correlations are generally higher than inter-correlations.

Factor coefficients

- Fitted "inter" parameters for selected risk factors (" λ_k ").
- Blue: EM EMEA; orange: EU; green: EM L. Am.; red: EM Asia; purple: N. Am.; brown: Pacific

Factor coefficients

- Fitted "intra" parameters for selected risk factors (" ν_k ").
- Blue: N. Am. inter; orange: EU; green: EM Asia; red: N. Am.; purple: Financials

Reverse stress testing (Covid-19 pandemic)

Reverse stress parameters (red), fitted parameters as of 2020-02-18 (blue) 0.5 0.4 0.3 0.2 Ī 0.1 Þ 0.0 -0.1 Reverse stress parameters (red), fitted parameters as of 2020-03-18 (blue) 0.5 0.4 0.3 0.2 ł 0.1 0.0 -0.1 **MINA00000PUS MIWOOREOOPUS** dMIEU00000PUS dMILA00000PUS dMIWD0CD00PUS dMIW/D0CS00PUS dMIWD0HC00PUS dMIWOOFN00PUS **MIWO0IT00NUS** dMIWD0TC00PUS IIPC00000PUS MILA00000PUS MIEE00000PUS **MIWDOHCOOPUS IMIWOOFN00PUS** INVODITODNUS IWD0TC00PUS **MIWOOUT00PUS** dMINA00000PUS /IMS00000PU MIWOOENOOPU IIWOOMT00PU. INDOINOOPU **MIWDOCD00PU MIWDOCS00PU** dMIPC00000PU dMIEE00000PU UT000002MIMb dMIW00MT00PU:

Worst-case scenario within 99% Maha distance

Partially realised in Feb/March 2020

Value-at-risk impact

Blue: VaR_{99%,1 day} on equally-weighted portfolio of DAX and S&P 500

► Orange: Stressed VaR_{99%,1 day} on reverse stress scenario of 1 Feb 2021.

Motivation for correlation stress-testing

London Whale

Generalised approach

Conclusion

- We develop a correlation stress testing framework, linking (risk) factors with correlations.
- Reverse stress tests can be conducted by assigning the factor loading a distribution.
- "London whale": a significant de-correlation between investment grade and high yield credit derivatives broke the "hedges" in the SCP.
- Simple correlation stress testing exposes the significant risks in a portfolio with high notional and low RWA.
- General case: factors (e.g. industries, countries) are linked firms via Bayesian variable selection methods
- Outlook: apply PCA to generate factors; factors can often be given an economic interpretation (global factor, Europe, etc.)

References I

- Alexander, C. and E. Sheedy. Developing a stress testing framework based on market risk models. *Journal of Banking & Finance*, 32(10):2220–2236, 2008.
- Brigo, D. A note on correlation and rank reduction. Working Paper, May 2002.
- DTCC. Depository Trust & Clearing Corporation Trade Information Warehouse, 2014.
- Fahrmeir, L., T. Kneib, S. Lang, and B. Marx. Regression. Springer, 2013.
- JPMorgan. Report of JPMorgan Chase & Co. Management Task Force Regarding 2012 CIO Losses, 2013.
- Kupiec, P. Stress testing in a Value at Risk framework. *Journal of Derivatives*, 6:7–24, 1998.
- Longin, F. and B. Solnik. Extreme correlation of international equity markets. The Journal of Finance, 56(2):649–676, 2001.
- Loretan, M. and W. English. Evaluating changes in correlations during periods of high market volatility. BIS Quarterly Review, pages 29–36, June 2000.

References II

- McNeil, A., R. Frey, and P. Embrechts. *Quantitative Risk Management*. Princeton University Press, Princeton, NJ, 2nd edition, 2015.
- Packham, N. Correlation parameterization and calibration for the LIBOR market model. Master Thesis, Frankfurt School of Finance & Management, March 2005.
- Rebonato, R. Modern Pricing of Interest-Rate Derivatives: The LIBOR Market Model and Beyond. Princeton University Press, 2002.
- Schoenmakers, J. and B. Coffey. Stable implied calibration of a multi-factor libor model via a semi-parametric correlation structure. Weierstrass Institute for Applied Analysis and Stochastics, Preprints, No. 611, 2000.
- United-States-Senate. JPMorgan Chase Whale Trades: A case history of derivatives risks and abuses. exhibits, 2013.
- United-States-Senate. JPMorgan Chase Whale Trades: A case history of derivatives risks and abuses. report, 2013.

Thank you!

Prof. Dr. Natalie Packham Professor of Mathematics and Statistics Berlin School of Economics and Law Badensche Str. 52 10825 Berlin natalie.packham@hwr-berlin.de

BER

ORWNH TO Hochschule für Wirtschaft und Recht Berlin Berlin School of Economics and Law

